Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064703    DOI: 10.1088/1674-1056/28/6/064703

Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface

Na Li(李娜)1, Wei Zhang(张伟)2, Wei Chen(陈唯)1
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China;
2 School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

The hydrodynamic interactions (HIs) in colloidal monolayers are strongly influenced by the boundary conditions and can be directly described in terms of the cross-correlated diffusion of the colloid particles. In this work, we experimentally measured the cross-correlated diffusion in colloidal monolayers near a water-oil interface. The characteristic lengths of the system were obtained by introducing an effective Saffman length. The characteristic lengths of a particle monolayer near a water-oil interface were found to be anisotropic in the longitudinal and transverse directions. From these characteristic lengths, the master curves of cross-correlated diffusion are obtained, which universally describe the HIs near a liquid-liquid interface.

Keywords:  colloidal monolayer      cross-correlated diffusion      hydrodynamic interactions      characteristic length  
Received:  29 March 2019      Revised:  05 May 2019      Accepted manuscript online: 
PACS:  47.57.J- (Colloidal systems)  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
  05.40.Jc (Brownian motion)  
  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474054, 11774417, and 11604381) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160238).

Corresponding Authors:  Wei Chen     E-mail:

Cite this article: 

Na Li(李娜), Wei Zhang(张伟), Wei Chen(陈唯) Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface 2019 Chin. Phys. B 28 064703

[1] Wang C J, Ackerman D M, Slowing I I and Evans J W 2014 Phys. Rev. Lett. 113 038301
[2] Rienzo C D, Piazza V, Gratton E, Beltram F and Cardarelli F 2014 Nat. Commun. 5 5891
[3] Levine A J and Lubensky T C 2000 Phys. Rev. Lett. 85 1774
[4] Frydel D and Diamant H 2010 Phys. Rev. Lett. 104 248302
[5] Shani I, Beatus T, Bar-Ziv R H and Tlusty T 2014 Nat. Phys. 10 140
[6] Lutz C, Kollmann M and Bechinger C 2004 Phys. Rev. Lett. 93 026001
[7] Misiunas K, Pagliara S, Lauga E, Lister J R and Keyser U F 2015 Phys. Rev. Lett. 115 038301
[8] Beatus T, Tlusty T and Bar-Ziv R 2006 Nat. Phys. 2 743
[9] Cui B, Diamant H and Lin B 2002 Phys. Rev. Lett. 89 188302
[10] Wang C Y, Zhang C B, Huang X Y, Liu X D and Chen Y P 2016 Chin. Phys. B 25 108202
[11] Li H H, Zheng Z Y and Wang Y R 2019 Chin. Phys. Lett. 36 034701
[12] He W, Song H, Su Y, Geng L, Ackerson B J, Peng H B and Tong P 2016 Nat. Commun. 7 11701
[13] Oppenheimer N and Diamant H 2009 Biophys J. 96 3041
[14] Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov N S, Genest M, Hodges R S and Urbach W 2006 Proc. Natl. Acad. Sci. USA 103 2098
[15] Huang K and Szlufarska I 2015 Nat. Commun. 6 8558
[16] Cui B, Diamant H, Lin B and Rice S A 2004 Phys. Rev. Lett. 92 258301
[17] Cichocki B, Ekiel-Jezewska M L and Wajnryb E 2007 J. Chem. Phys. 126 184704
[18] Brotto T, Caussin J B, Lauga E and Bartolo D 2013 Phys. Rev. Lett. 110 038101
[19] Wang G M, Prabhakar R and Sevick E M 2009 Phys. Rev. Lett. 103 248303
[20] Kaveh F, Ally J, Kappl M and Butt H J 2014 Langmuir 30 11619
[21] Ishak N I, Muniandy S V, Periasamy V, Ng F L and Phang S M 2017 Chin. Phys. B 26 088203
[22] Prasad V, Koehler S A and Weeks E R 2006 Phys. Rev. Lett. 97 176001
[23] He D H, Yang T, Li W H, Zhang Q L and Ma H R 2007 Chin. Phys. B 16 3138
[24] Prasad V and Weeks E R 2009 Phys. Rev. Lett. 102 178302
[25] Nguyen Z H, Atkinson M, Park C S, Maclennan J, Glaser M and Clark N 2010 Phys. Rev. Lett. 105 268304
[26] Oppenheimer N and Diamant H 2010 Phys. Rev. E 82 041912
[27] Saffman P G and Delbruck M 1975 Proc. Natl. Acad. Sci. USA 72 3111
[28] Vivek S and Weeks E R 2015 PLoS ONE 10 e0121981
[29] Cheung C, Hwang Y H, Wu X and Choi H J 1996 Phys. Rev. Lett. 76 2531
[30] Saffman P G 1976 J. Fluid Mech. 73 593
[31] Zhang W, Li N, Bohinc K, Tong P and Chen W 2013 Phys. Rev. Lett. 111 168304
[32] Li N, Zhang W, Jiang Z and Chen W 2018 Preprint at http://arxivorg/abs/180810649
[33] Zhang W, Chen S, Li N, Zhang J Z and Chen W 2014 PLoS ONE 9 e85173
[34] Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298
[35] Chen W and Tong P 2008 Europhys Lett. 84 28003
[36] Wang G M, Prabhakar R, Xgao Y and Sevick E M 2011 J. Opt. 13 044009
[37] Hamrock B J, Schmid S R and Jacobson B O 2004 Fundamentals of Fluid Film Lubrication, 2nd edn. (New York: Marcei Dekker, Inc.)
[1] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi (吴以治), Chen Chen (陈晨), Xu Xiao-Liang (许小亮), Liu Yun-Xi (刘赟夕), Shao Wei-Jia (邵伟佳), Yin Nai-Qiang (尹乃强), Zhang Wen-Ting (张文婷), Ke Jia-Xin (柯佳鑫), Fang Xiao-Tian (方啸天). Chin. Phys. B, 2014, 23(8): 088703.
No Suggested Reading articles found!