Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 063203    DOI: 10.1088/1674-1056/28/6/063203
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Charge-state populations for the neon-XFEL system

Ping Deng(邓萍)1,2, Gang Jiang(蒋刚)1,2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Chengdu 610065, China
Abstract  

The interaction between neon and x-ray free-electron lasers with different laser parameters is systematically studied by solving a set of coupled rate equations. As an example, the evolution of 1s12s22p6 configuration is given under different incident photon numbers, pulse widths, and photon energies. We have also determined all of the charge-state populations as a function of three laser pulse parameters by averaging over time. The result shows that the variations of these charge-state populations demonstrate a pattern when the pulse width is shorter than 10 fs:some of the charge-states decrease rapidly, while the others rise but remain relatively constant for pulse width larger than 10 fs. The variation of the average charge with three parameters has also obtained. The average charge decreases for a pulse width shorter than 10 fs but remains basically unchanged for a pulse width longer than 10 fs.

Keywords:  x-ray free electron lasers      neon      charge-state population      pulse width  
Received:  14 November 2018      Revised:  03 April 2019      Published:  05 June 2019
PACS:  32.80.Hd (Auger effect)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474208).

Corresponding Authors:  Gang Jiang     E-mail:  gjiang@scu.edu.cn

Cite this article: 

Ping Deng(邓萍), Gang Jiang(蒋刚) Charge-state populations for the neon-XFEL system 2019 Chin. Phys. B 28 063203

[1] Pellegrini C, Marinelli A and Reiche S 2016 Rev. Mod. Phys. 88 015006
[2] Young L, Känter E P, Krassig B et al. 2010 Nature 466 56
[3] Emma P, Akre R, Arthur J et al. 2010 Nat. Photon. 4 641
[4] Ishikawa T, Aoyagi H, Asaka T et al. 2012 Nat. Photon. 6 540
[5] Kang H S, Min C K, Heo H et al. 2017, Nat. Photon. 11 708
[6] Tschentscher T, Bressler C, Grünert J, Madsen A, Mancuso A P, Meyer M, Scherz A, Sinn H and Zastrau U 2017 Applied Science-Based 7 592
[7] Milne C J, Schietinger T, Aiba M et al. 2017 Applied Sciences-Basel 7 720
[8] Milne C J, Beaud P, Deng Y P, Erny C, Follath R, Flechsig U, Hauri P C, Ingold G, Juranic P, Knopp G, Lemke H, Pedrini B, Radi P, and Patthey L 2017 Chimia 71 299
[9] Galayda J N 2014 in Proceedings of the 2014 International Particle Accelerator Conference, Dresden, Germany, p. 935
[10] Son S K, Young L and Santra R 2011 Phys. Rev. A 83 033402
[11] Feldhaus J, Arthur J and Hastings J B 2005 Phys. B: At. Mol. Opt. Phys. 38 S799
[12] Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J and Williams G J 2016 Rev. Mod. Phys. 88 015007
[13] Ho P J, Bostedt C, Schorb S and Young L 2014 Phys. Rev. Lett. 113 253001
[14] Hoener M, Fang L, Kornilov O et al. 2010 Phys. Rev. Lett. 104 253002
[15] Mankowsky R, Subedi A, Först M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A and Cavalleri A 2014 Nature 516 71
[16] Vinko S M, Ciricosta O, Cho B I et al. 2012 Nature 482 59
[17] Zhang W K, Alonso-Mori R, Bergmann U et al. 2014 Nature 509 345
[18] Zhou Q J, Lai Y, Bacaj T, Zhao M L, Lyubimov A Y, Uervirojnangkoorn M, Zeldin O B, Brewster A S, Sauter N K, Cohen A E, Soltis S M, Alonso-Mori R, Chollet M, Lemke H T, Pfuetzner R A, Choi U B, Weis W I, Diao J J, Südhof T C and Brunger A T 2015 Nature 525 62
[19] Fan J D and Jiang H D 2012 Acta Phys. Sin. 61 218702 (in Chinese)
[20] Lei F and Gang J 2017 Acta Phys. Sin. 66 153201 (in Chinese)
[21] Yoneda H, Inubushi Y, Yabashi M, Katayama T, Ishikawa T, Ohashi H, Yumoto H, Yamauchi K, Mimura H and Kitamura H 2014 Nat. Commun. 5 5080
[22] Nagler B, Zastrau U, Fäustlin R R et al. 2009 Nat. Phys. 5 693
[23] Moribayashi K, Sasaki A and Tajima T 1998 Phys. Rev. A 58 2007
[24] Rohringer N and Santra R 2007 Phys. Rev. A. 76 033416
[25] Gao C, Zeng J L and Yuan J M 2015 High Energy Density Physics 14 52
[26] Gao C, Zeng J L and Yuan J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 044001
[27] Ciricosta O, Chung H K, Lee R W and Wark J S 2011 High Energy Density Physics 7 111
[28] Xiang W J, Gao C, Fu Y S, Zeng J L and Yuan J M 2012 Phys. Rev. A. 86 061401
[29] Gu M F 2008 Can. J. Phys. 86 675
[30] Tschentscher T, Altarelli M, Brinkmann R, Delissen T, Schwarz A S and Witte K 2006 Synchrotron Radiation News 19 13
[31] Lei F 2017 “Hollow atoms formation and x-ray transparency of Ne in 2000 eV XFEL research basing on ionization route,” MS Dissertation (Chengdu: Sichuan University) (in Chinese)
[32] Bethe H A and Salpeter E E 1977 Quantum Mechanics of One- and Two-Electron Atoms (New York: Plenum Publishing Corporation) p. 300
[33] Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T and Yabashi M 2015 Nature 524 446
[34] Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P and Rocca J J 2012 Nature 481 488
[1] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[2] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[3] Passively Q-switched diode-pumped Tm, Ho: LuVO4 laser with a black phosphorus saturable absorber
Linjun Li(李林军), Tianxin Li(李天鑫), Long Zhou(周龙), Jianying Fan(范剑英), Yuqiang Yang(杨玉强), Wenqiang Xie(谢文强), Shasha Li(李莎莎). Chin. Phys. B, 2019, 28(9): 094205.
[4] Modeling and understanding of the thermal failure induced by high power microwave in CMOS inverter
Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Yang Liu(刘阳), Yin-Tang Yang(杨银堂), Chun-Lei Shi(史春蕾), Qing-Yang Fan(樊庆扬), Yu-Qian Liu(刘彧千). Chin. Phys. B, 2017, 26(5): 058502.
[5] Flexible pulses from carbon nanotubes mode-locked fiber laser
Ling-Zhen Yang(杨玲珍), Yi Yang(杨义), Juan-Fen Wang(王娟芬). Chin. Phys. B, 2016, 25(12): 124203.
[6] Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
Song Rui, Lei Cheng-Min, Chen Sheng-Ping, Wang Ze-Feng, Hou Jing. Chin. Phys. B, 2015, 24(8): 084207.
[7] Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
Lei Bo, Xiao Guo-Chun, Wu Xuan-Lü. Chin. Phys. B, 2013, 22(6): 060509.
[8] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang,Chai Chang-Chun,Ren Xing-Rong,Yang Yin-Tang,Chen Bin,Zhao Ying-Bo. Chin. Phys. B, 2012, 21(5): 058502.
[9] The characteristics of sonoluminescence
An Yu, Wen-Juan. Chin. Phys. B, 2012, 21(1): 017806.
[10] Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system
Yu Xuan-Yi, Ding Xin, Zhang Heng, Wang Rui, Wen Wu-Qi, Zhang Bai-Gang, Wang Peng, Yao Jian-Quan. Chin. Phys. B, 2008, 17(10): 3759-3764.
[11] Theoretical and experimental investigations of quasi-continuous wave diode array side-pumped Yb:YAG slab laser
Wu Hai-Sheng, Yan Ping, Gong Ma-Li, Liu Qiang. Chin. Phys. B, 2004, 13(6): 871-876.
No Suggested Reading articles found!