Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 063202    DOI: 10.1088/1674-1056/28/6/063202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms

N Lamoudi1,2, F Talbi1,3, M T Bouazza1,4, M Bouledroua1,3, K Alioua5,3
1 Badji Mokhtar University, B. P. 12 Annaba, Algeria;
2 Laboratoire LESIMS;
3 Laboratoire de Physique des Rayonnements;
4 Laboratoire LAMA;
5 Souk-Ahras University, Souk-Ahras 41000, Algeria
Abstract  

The pressure broadening in the far wings, where the sodium Na (3p←3s) resonance line is perturbed by ground lithium Li (2s) atoms, has been theoretically analyzed. The NaLi potential-energy curves and the transition dipole moments are constructed by using a reliable ab initio data points to carry out the reduced-absorption coefficients kr(ν,T). This quantum-mechanical investigation have demonstrated that the NaLi profile spectra show a satellite future in the red wing at wavelength λ=685 nm in the temperature range 4000 K-1.8×104 K. The computation could also exhibit a second satellite, in the blue wing, near the wavelength λ=574 nm beyond 6000 K and a third peak located at λ=490 nm which begins to appear at 1.8×104 K.

Keywords:  pressure broadening      absorption coefficient      satellite structure      radiative lifetime  
Received:  10 March 2019      Revised:  18 April 2019      Published:  05 June 2019
PACS:  32.80.-t (Photoionization and excitation)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  32.70.Jz (Line shapes, widths, and shifts)  
Corresponding Authors:  N Lamoudi     E-mail:  noralamoudi@yahoo.fr

Cite this article: 

N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms 2019 Chin. Phys. B 28 063202

[1] Allard N F and Kielkopf J F 1982 Rev. Mod. 54 1103
[2] Szudy J and Baylis W E 1996 Phys. Rep. 266 127
[3] Burrows A, Hubbard W, Lunine J I and Liebert J 2001 Rev. Mod. Phys. 73 719
[4] Hawley S L 2001 Proceedings of the 12th Cambridge Workshop on cool Stars. Stellar Systems, and the Sun, 30 July-3 August 2001 (University of Colorado USA) p. 97
[5] Allard N F, Allard F, Hauschildt P H, Kielkopf J F and Machin L 2003 Astrom. Astrophys. 411 L473
[6] Allard N F, Allard F and kielkopf J F 2005 Astrom. Astrophys. 440 1195
[7] Allard N F and Spiegelman F 2006 Astrom. Astrophys. 452 351
[8] Mullamphy D F T, Peach G, Venturi V, Whittingham B and Gibson S J 2007 J. Phys. B 40 1141
[9] Zhu C, Babb J F and Dalgarno A 2005 Phys. Rev. A 71 052710
[10] Zhu C, Babb J F and Dalgarno A 2006 Phys. Rev. A 73 012506
[11] Shurgalin M, Parkinson W H, Yoshino K, Schoene C and Lapatovitch W P 2000 Meas. Sci. Technol. 11 730
[12] Vadla C, Beuc R, Horvatic V, Movre M, Quentmeier A and Niemax K 2006 Eur. Phys. J. D 37 37
[13] Vadla C, Horvatic V and Niemax K 2006 Appl. Phys. B 84 523
[14] Shindo F, Babb J F, Kirby K and Yoshino K 2007 J. Phys. B 40 2841
[15] Chung H K, Kirby K and Babb J F 1999 Phys. Rev. A 60 2002
[16] Chung H K, Kirby K and Babb J F 2001 Phys. Rev. A 63 032516
[17] Lamoudi N, Bouledroua M, Aliou K, Allouche A R and Aubert-Frécon M 2013 Phys. Rev. A 87 52713
[18] Talbi F, Bouledroua M and Aliou K 2008 Eur. Phys. J. D 50 141
[19] Aubert-Frécon M private communication
[20] Pauly H 1979 in Atomic-Molecule Collision Theory, ed. Bernstein R B (New York: Plenum Press)
[21] Marinescu M and Sadeghpour R H 1999 Phys. Rev. A 59 390
[22] Schmidt-Mink I, Müller W and Meyer W 1984 Chem. Phys. Lett. 112 120
[23] Mabrouk N and Berriche H 2008 J. Phys. B 41 155101
[24] Petsalakis I D, Tzeli D and Theodorakopoulosa G 2008 J. Chem. Phys. 129 054306
[25] Kappes M M, Marti K O, Radi P, Schar M and Schumacher E 1984 Chem. Phys. Lett. 107 6
[26] Engelek F, Ennen G and Meiwes K H 1982 Chem. Phys. 66 391
[27] Chu X and Dalgarno A 2002 Phys. Rev. A 66 024701
[28] Le Roy R J 2001 Level v 7.4 Program, Chemical Physics Research Report, University of Waterloo
[29] Herzberg G 1963 Molecular Spectra and Molecular Structure Spectra of Diatomic Molecules, Vol. I (Princeton: D. van Nostrand Co.)
[30] Landau L D and Lifshitz E M 1981 Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press)
[31] Reho J, Higging J, Lehmann K K and Scoles G 2000 J. Chem. Phys. 113 9649
[32] Carlsson J and Sturesson L 1989 Z. Phys. D 14 281
[33] Voltz U and Schmoranzer H 1966 Phys. Scr. T65 48
[34] Tiemann E, Knöckel H and Richling H 1966 Z. Phys. D 37 323
[35] Numerov B 1933 Publ. Observ. Central Astrophys. Russ. 2 188
[36] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1987 Numerical Recipes: The Art of Scientific Computing (New York: Cambridge University Press)
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[3] Analysis of highly efficient perovskite solar cells with inorganic hole transport material
I Kabir, S A Mahmood. Chin. Phys. B, 2019, 28(12): 128801.
[4] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[5] Light absorption coefficients of ionic liquids under electric field
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Ju-Lius Caesar Puoza, Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2019, 28(1): 017801.
[6] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[7] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[8] Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer
Liu Qiang, Huang Hong-Hua, Wang Yao, Wang Gui-Shi, Cao Zhen-Song, Liu Kun, Chen Wei-Dong, Gao Xiao-Ming. Chin. Phys. B, 2014, 23(6): 064205.
[9] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui, Zhang Xiao-Mei, Jin Ming-Xing, Xu Hai-Feng, Yan Bing. Chin. Phys. B, 2014, 23(5): 053101.
[10] Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique
Masoumeh Shokati Mojdehi, Wan Mahmood Mat Yunus, Khor Shing Fhan, Zainal Abidin Talib, N. Tamchek. Chin. Phys. B, 2013, 22(11): 117802.
[11] Monitoring the reaction between AlCl3 and o-xylene by using terahertz spectroscopy
Jin Wu-Jun, Li Tao, Zhao Kun, Zhao Hui. Chin. Phys. B, 2013, 22(11): 118701.
[12] The effect of an optical pump on the absorption coefficient of magnesium-doped near-stoichiometric lithium niobate in terahertz range
Zuo Zhi-Gao, Ling Fu-Ri, Ma De-Cai, Wu Liang, Liu Jin-Song, Yao Jian-Quan. Chin. Phys. B, 2013, 22(10): 107802.
[13] Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells
Cao Xiao-Long, Li Zhong-Yang, Yao Jian-Quan, Wang Yu-Ye, Zhu Neng-Nian, Zhong Kai, Xu De-Gang. Chin. Phys. B, 2012, 21(8): 084207.
[14] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie, Yu Zhong-Yuan, Liu Yu-Min. Chin. Phys. B, 2010, 19(7): 077101.
[15] Radiative lifetime measurements of odd-parity high-excited levels of Sn I by time-resolved laser spectroscopy
Xu Jia-Xin, Feng Yan-Yan, Sun Gui-Juan, Dai Zhen-Wen. Chin. Phys. B, 2009, 18(9): 3828-3832.
No Suggested Reading articles found!