Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060301    DOI: 10.1088/1674-1056/28/6/060301
GENERAL Prev   Next  

Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis

Zhi-Yuan Li(李志远)
College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
Abstract  

According to the orthodox interpretation of quantum physics, wave-particle duality (WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferometers (AI) have so far upheld the principle of WPD, either by the mechanism of the Heisenberg's position-momentum uncertainty relation or by quantum entanglement. In this paper, we propose and make a systematic quantum mechanical analysis of several schemes of weak-measurement atom interferometer (WM-AI) and compare them with the historical schemes of strong-measurement atom interferometer (SM-AI), such as Einstein's recoiling slit and Feynman's light microscope. As the critical part of these WM-AI setups, a weak-measurement path detector (WM-PD) deliberately interacting with the atomic internal electronic quantum states is designed and used to probe the which-path information of the atom, while only inducing negligible perturbation of the atomic center-of-mass motion. Another instrument that is used to directly interact with the atomic center-of-mass while being insensitive to the internal electronic quantum states is used to monitor the atomic center-of-mass interference pattern. Two typical schemes of WM-PD are considered. The first is the micromaser-cavity path detector, which allows us to probe the spontaneously emitted microwave photon from the incoming Rydberg atom in its excited electronic state and record unanimously the which-path information of the atom. The second is the optical-lattice Bragg-grating path detector, which can split the incoming atom beam into two different directions as determined by the internal electronic state and thus encode the which-path information of the atom into the internal states of the atom. We have used standard quantum mechanics to analyze the evolution of the atomic center-of-mass and internal electronic state wave function by directly solving Schrödinger's equation for the composite atom-electron-photon system in these WM-AIs. We have also compared our analysis with the theoretical and experimental studies that have been presented in the previous literature. The results show that the two sets of instruments can work separately, collectively, and without mutual exclusion to enable simultaneous observation of both wave and particle nature of the atoms to a much higher level than the historical SM-AIs, while avoiding degradation from Heisenberg's uncertainty relation and quantum entanglement. We have further investigated the space-time evolution of the internal electronic quantum state, as well as the combined atom-detector system and identified the microscopic origin and role of quantum entanglement, as emphasized in numerous previous studies. Based on these physics insights and theoretical analyses, we have proposed several new WM-AI schemes that can help to elucidate the puzzling physics of the WPD of the atoms. The principle of WM-AI scheme and quantum mechanical analyses made in this work can be directly extended to examine the principle of WPD for other massive particles.

Keywords:  wave-particle duality      atom interferometers      weak-measurement path-detector      quantum entanglement      Heisenberg'      s uncertainty relation  
Received:  07 January 2019      Revised:  11 March 2019      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.75.Dg (Atom and neutron interferometry)  
  42.50.Xa (Optical tests of quantum theory)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA 0306200), the National Natural Science Foundation of China (Grant No. 11434017), and the Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06C594).

Corresponding Authors:  Zhi-Yuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Zhi-Yuan Li(李志远) Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis 2019 Chin. Phys. B 28 060301

[1] Bohr B 1949 Albert Einstein: Philosopher Sci., Schilpp P A ed. (Peru: Open Court) pp. 200-241
[2] Feynman R, Leighton R and Sands M 1965 The Feynman Lectures on Physics, Vol. Ⅲ, Chap. I (Reading: Addison Wesley)
[3] Wheeler J A 1978 Mathematical Foundations Of Quantum Theory, Marlow E R ed. (New York: Academic Press) pp. 9-48
[4] Wheeler J A 1979 Problems in the Formulations of Physics di Francia G T ed. (Amsterdam: North-Holland)
[5] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[6] Zurek W H 2003 Rev. Mod. Phys. 75 715
[7] Schlosshauer M 2005 Rev. Mod. Phys. 76 1267
[8] Shadbolt P, Mathews J C F, Laing A and O'Brien J L 2014 Nat. Phys. 10 278
[9] Zeilinger A, Gahler R, Shull C G, Theimer W and Mampe W 1988 Rev. Mod. Phys. 60 1067
[10] Carnal O and Mlynek J 1991 Phys. Rev. Lett. 66 2689
[11] Eichman U, Bergquist J C, Bollinger J J, Gilligan J M, Itano W M, Winel and D J 1993 Phys. Rev. Lett. 70 2359
[12] Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680
[13] Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275 637
[14] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[15] Bertet P, Osnaghi S, Rauschenbeutel A, Nogues G, Auffeves A, Brune M, Raimond J M and Haroche S 2001 Nature 411 166
[16] Zhu X, Fang X, Peng X, Feng M, Gao K and Du F 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4349
[17] Hackermuller L, Uttenthaler S, Hornberger K, Reiger E, Brezger B, Zeilinger A and Arndt M 2003 Phys. Rev. Lett. 91 090408
[18] Liu X J, Miao Q, Gel'mukhanov F, Patanen M, Travnikova O, Nicolas C, Agren H, Ueda K and Miron C 2015 Nat. Photon. 9 120
[19] Wang Z H, Tian Y L, Yang C, Zhang P F, Li G and Zhang T C 2016 Phys. Rev. A 94 062124
[20] Scully M O, Englert B G and Walther H 1991 Nature 351 111
[21] Storey E P, Tan S, Collett M J and Walls D F 1994 Nature 367 626
[22] Englert B G, Scully M O and Walther H 1995 Nature 375 367
[23] Storey E P, Tan S M, Collett M J and Walls D F 1995 Nature 375 368
[24] Wiseman H and Harrison F 1995 Nature 377 584
[25] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2007 Science 315 966
[26] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2013 Phys. Rev. Lett. 110 220402
[27] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[28] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600
[29] Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 338 637
[30] Peruzzo A, Shadbolt P, Brunner N, Popescu S and O'Brien J L 2012 Science 338 634
[31] Danan A, Farfurnik D, Bar-Ad S and Vaidman L 2013 Phys. Rev. Lett. 111 240402
[32] Saldanha P L 2014 Phys. Rev. A 89 033825
[33] Yan H, Liao K, Deng Z, He J, Xue Z Y, Zhang Z M and Zhu S L 2015 Phys. Rev. A 91 042132
[34] Li Z Y 2014 Chin. Phys. B 23 110309
[35] Li Z Y 2016 Chin. Phys. Lett. 33 080302
[36] Li Z Y 2017 Europhys. Lett. 117 50005
[37] Zhou Z Y, Zhu Z H, Liu S L, Li Y H, Shi S, Ding D S, Chen L X, Gao W, Guo G C and Shi B S 2017 Sci. Bull. 62 1185
[38] Long G, Qin W, Yang Z and Li J L 2018 Sci. Chin. Phys. Mech. & Astron. 61 030311
[39] The Nobel Prize in Physics 1989 was awarded to Norman F. Ramsey “for the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks” and Hans G. Dehmelt and Wolfgang Paul “for the development of the ion trap technique”
[40] The Nobel Prize in Physics 1997 was awarded to Steven Chu, Claude Cohen-Tannoudji, and William D Phillips “for development of methods to cool and trap atoms with laser light”
[41] The Nobel Prize in Physics 2012 was awarded to Serge Haroche and David J Wineland for “ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems”
[42] Cronin A D, Schmiedmayer J and Pritchard D E 2009 Rev. Mod. Phys. 81 1051
[43] Kunze S, Dürr S and Rempe G 1996 Europhys. Lett. 34 343
[44] Kunze S, Dürr S, Dieckmann K, Elbs M, Ernst U, Hardell A, Wolf S and Rempe G 1997 J. Mod. Opt. 44 1863
[1] Entanglement and thermalization in the extended Bose—Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!