Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057802    DOI: 10.1088/1674-1056/28/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer

Xuee An(安雪娥)1, Zhengjun Shang(商正君)1, Chuanhe Ma(马传贺)1, Xinhe Zheng(郑新和)2, Cuiling Zhang(张翠玲)3, Lin Sun(孙琳)1, Fangyu Yue(越方禹)1, Bo Li(李波)1, Ye Chen(陈晔)1
1 Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, China;
2 Department of Physics, Beijing University of Science and Technology, Beijing 100083, China;
3 Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
Abstract  

Temperature and excitation dependent photoluminescence (PL) of InGaN epilayer grown on c-plane GaN/sapphire template by molecular beam epitaxy (MBE) has been systematically investigated. The emission spectra of the sample consisted of strong multiple peaks associated with one stimulated emission (SE) located at 430 nm and two spontaneous emissions (SPE) centered at about 450 nm and 480 nm, indicating the co-existence of shallow and deep localized states. The peak energy of SE exhibiting weak s-shaped variation with increasing temperature revealed the localization effect of excitons. Moreover, an abnormal increase of the SPE intensity with increasing temperature was also observed, which indicated that the carrier transfer between the shallow and deeper localized states exists. Temperature dependent time-resolved PL (TRPL) demonstrated the carrier transfer processes among the localized states. In addition, a slow thermalization of hot carriers was observed in InGaN film by using TRPL and transient differential reflectivity, which is attributed to the phonon bottleneck effect induced by indium aggregation.

Keywords:  InGaN      stimulated emission      spontaneous emission      carrier transfer  
Received:  10 November 2018      Revised:  02 February 2019      Accepted manuscript online: 
PACS:  78.40.Fy (Semiconductors)  
  78.45.+h (Stimulated emission)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Key Research Program of China (Grant No. 2016YFB0501604) and the National Natural Science Foundation of China (Grant Nos. 10874127 and 61227902).

Corresponding Authors:  Bo Li, Ye Chen     E-mail:  bli@ee.ecnu.edu.cn;ychen@ee.ecnu.edu.cn

Cite this article: 

Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔) Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer 2019 Chin. Phys. B 28 057802

[1] Chua S J, Soh C B, Liu W, Teng J H, Ang S S and Teo S L 2008 Phys. Status Solidi. c 5 2189
[2] Satake A, Masumoto Y, Miyajima T, Asatsuma T, Nakamura F and Ikeda M 1998 Phys. Rev. B 57 R2041
[3] Togtema G, Georgiev V, Georgieva D, Gergova R, Butcher K S A and Alexandrov D 2015 Solid State Electron. 103 44
[4] Guo W, Zhang M, Banerjee A and Bhattacharya P 2010 Nano Lett. 10 3355
[5] Ryu M Y, Kuokstis E, Chen C Q, Yang J Q, Simin G, Asifkhan M, Sim G G and Yu P W 2003 Solid State Commun. 126 329
[6] Narukawa Y, Kawakami Y and Fujita S 1999 Phys. Rev. B 59 10283
[7] Chichibu S, Wada K and Nakamura S 1997 Appl. Phys. Lett. 71 2346
[8] Li Z, Kang J, Wang B W, Li H J, Weng Y H, Lee Y C, Liu Z Q, Yi X Y, Feng Z C and Wang G H 2014 J. Appl. Phys. 115 083112
[9] Pozina G, Bergman J P, Monemar B, Takeuchi T, Amano H and Akasaki I 2000 J. Appl. Phys. 88 2677
[10] Kuokstis E, Yang J W, Simin G, Khan M A, Gask R and Shur M S 2002 Appl. Phys. Lett. 80 977
[11] Chichibu S, Azuhata T, Sota T and Nakamura S 1997 Appl. Phys. Lett. 70 2822
[12] Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[13] Yamada Y, Saito T, Kato N, Kobayashi E, Taguchi T, Kudo H and Okagawa H 2009 Phys. Rev. B 80 195202
[14] Wang Q, Gao X G, Xu Y L and Leng J C 2017 J. Alloys & Compd. 726 460
[15] Liu W, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M, Li X, Liu J P, Zhang S M, Wang H, Yang H, Zhang Y T and Du G T 2015 Opt. Express 23 15935
[16] Bidnyk S, Schmidt T J, Cho Y H, Gainer G H, Song J J, Keller S, Mishra U K and Denbaars S P 1998 Appl. Phys. Lett. 72 1623
[17] Mon E and Sánchez M 2005 Phys. Stat. Sol. c 2 3686
[18] You G, Guo W, Zhang C, Bhattacharya P, Henderson R and Xu 2013 J. Appl. Phys. Lett. 102 091105
[19] Binder J, Korona K P, Wysmołek A and Kaminska M 2013 J. Appl. Phys. 114 223504
[20] Shang Z J, Zheng X H, Yang C, Chen Y, Li B, Sun L, Tang Z and Zhao D G 2014 Appl. Phys. Lett. 105 23104
[21] Lam J B 2005 Optical Studies of Gallium Nitride-based Light Emitting Structures (Ph. D. Dissertation) (Oklahoma: Oklahoma State University)
[22] Kawakami Y, Narukawa Y, Omae K, Fujita S and Nakamura S 2000 Appl. Phys. Lett. 77 2151
[23] Bidnyk S, Schmidt T J, Park G H and Song J J 1997 Appl. Phys. Lett. 71 729
[24] Wang H N, Ji Z W, Qu S, Jiang Y Z, Liu B L, Xu X A and Mino H 2012 Opt. Express 20 3932
[25] Mu Q, Xu M, Wang X, Wang Q, Lv Y J, Feng Z H, Xu X G and Ji Z W 2016 Phys. E 76 1
[26] Ma J, Ji X, Wang G H, Wei X C, Lu H X, Yi X Y, Duan R F, Wang J X, Zeng Y P, Li J M, Yang F H, Wang C and Zou G 2012 Appl. Phys. Lett. 101 131101
[27] Lin T, Kuo H C, Jiang X D and Feng Z C 2017 Nanoscale Res. Lett. 12 137
[28] Lioudakis E, Othonos A, Dimakis E, Iliopoulos E and Georgakilas A 2006 Appl. Phys. Lett. 88 121128
[1] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[2] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[3] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[4] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[5] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[6] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[7] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[8] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[9] Anisotropic stimulated emission cross-section measurement in Nd: YVO4
Rui Guo(郭瑞), Yijie Shen(申艺杰), Yuan Meng(孟鸢), Mali Gong(巩马理). Chin. Phys. B, 2019, 28(4): 044204.
[10] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[11] Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy
Haiyun Qin(秦海芸), Wei Zhao(赵伟), Chen Zhang(张琛), Yong Liu(刘勇), Guiren Wang(王归仁), Kaige Wang(王凯歌). Chin. Phys. B, 2018, 27(3): 037803.
[12] Suppression of indium-composition fluctuations in InGaN epitaxial layers by periodically-pulsed mixture of N2 and H2 carrier gas
Hai-Long Wang(王海龙), Xiao-Han Zhang(张晓涵), Hong-Xia Wang(王红霞), Bin Li(黎斌), Chong Chen(陈冲), Yong-Xian Li(李永贤), Huan Yan(颜欢), Zhi-Sheng Wu(吴志盛), Hao Jiang(江灏). Chin. Phys. B, 2018, 27(12): 127805.
[13] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
[14] Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells
Shitao Liu(刘诗涛), Zhijue Quan(全知觉), Li Wang(王立). Chin. Phys. B, 2017, 26(3): 038104.
[15] Output light power of InGaN-based violet laser diodes improved by using a u-InGaN/GaN/AlGaN multiple upper waveguide
Feng Liang(梁锋), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ping Chen(陈平), Jing Yang(杨静), Wei Liu(刘炜), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群), Wen-Jie Wang(王文杰), Mo Li(李沫), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同). Chin. Phys. B, 2017, 26(12): 124210.
No Suggested Reading articles found!