Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056102    DOI: 10.1088/1674-1056/28/5/056102
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Crystallographic and magnetic properties of van der Waals layered FePS3 crystal

Qi-Yun Xie(解其云)1,4, Min Wu(吴敏)1, Li-Min Chen(陈丽敏)1, Gang Bai(白刚)1, Wen-Qin Zou(邹文琴)3, Wei Wang(王伟)2,3, Liang He(何亮)3
1 Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
2 Key Laboratory of Flexible Electronics(KLOFE) & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing Tech University, Nanjing 211816, China;
3 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
4 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  

The crystallographic and magnetic properties are presented for van der Waals antiferromagnetic FePS3. High-quality single crystals of millimeter size have been successfully synthesized through the chemical vapor transport method. The layered structure and cleavability of the compound are apparent, which are beneficial for a potential exploration of the interesting low dimensional magnetism, as well as for incorporation of FePS3 into van der Waals heterostructures. For the sake of completeness, we have measured both direct current (dc) and alternating current (ac) magnetic susceptibility. The paramagnetic to antiferromagnetic transition occurs at approximately TN~115 K. The effective moment is larger than the spin-only effective moment, suggesting that an orbital contribution to the total angular momentum of the Fe2+ could be present. The ac susceptibility is independent of frequency, which means that the spin freezing effect is excluded. Strong anisotropy of out-of-plane and in-plane susceptibility has been shown, demonstrating the Ising-type magnetic order in FePS3 system.

Keywords:  FePS3      van der Waals crystals      single crystal      antiferromagnetism  
Received:  23 November 2018      Revised:  26 February 2019      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  75.50.Ee (Antiferromagnetics)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404169, 51602159, and 11704196), the Scientific Research Foundation of Nanjing University of Posts & Telecommunications, China (Grant Nos. NY217043 and NY218021), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX17_0754 and SJCX18_0287).

Corresponding Authors:  Wei Wang, Liang He     E-mail:  wwesun2000@163.com;heliang@nju.edu.cn

Cite this article: 

Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮) Crystallographic and magnetic properties of van der Waals layered FePS3 crystal 2019 Chin. Phys. B 28 056102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[3] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[4] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[5] Li Y, Wang T M, Wu M, Cao T, Chen Y W, Sankar R, Ulaganathan R K, Chou F C, Wetzel C, Xu C Y, Louie S G and Shi S F 2018 2D Mater. 5 021002
[6] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[7] Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2016 Nano Lett. 16 6383
[8] Huang B, Clark G, Moratalla E N, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Herrero P J and Xu X D 2017 Nature 546 270
[9] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[10] Li X, Wu X and Yang J 2014 J. Am. Chem. Soc. 136 11065
[11] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[12] Klingen W, Eulenberger G and Hahn H 1970 Naturwissenschaften 57 88
[13] Taylor B E, Steger J and Wold A 1973 J. Solid State Commun. 7 461
[14] Jernberg P, Bjarman S and Wäppling R 1984 J. Magn. Magn. Mater. 46 178
[15] Scagliotti M, Jouanne M, Balkanski M and Ouvrard G 1985 J. Solid State Commun. 54 291
[16] Jouanne M, Sanjuan M L, Kanehisa M A, Balkanski M and Scagliotti M 1989 Mater. Sci. Eng. B 3 85
[17] Flem G L, Brec R, Ouvrard G, Louisy A and Segransan P 1982 J. Phys. Chem. Solids 43 455
[18] Rule K C, McIntyre G J, Kennedy S J and Hicks T J 2007 Phys. Rev. B 76 134402
[19] Zhu W, Gan W, Muhammad Z, Wang C D, Wu C Q, Liu H J, Liu D B, Zhang K, He Q, Jiang H L, Zheng X S, Sun Z, Chen S M and Song L 2018 Chem. Commun. 54 4481
[20] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[21] Cheng Z Z, Shifa T A, Wang F M, Gao Y, He P, Zhang K, Jiang C, Liu Q L and He J 2018 Adv. Mater. 30 1707433
[22] Gao Y, Lei S J, Kang T T, Fei L F, Mak C L, Yuan J, Zhang M G, Li S J, Bao Q L, Zeng Z M, Wang Z, Gu H S and Zhang K 2018 Nanotechnology 29 244001
[23] Zhang S, Zhao X D, Wu D H and Zhou Z 2016 Adv. Sci. 3 1600062
[24] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W and Park J G 2016 Sci. Rep. 6 20904
[25] Murayama C, Okabe M, Urushihara D, Asaka T, Fukuda K, Isobe M, Yamamoto K and Matsushita Y 2016 J. Appl. Phys. 120 142114
[26] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[27] Scagliotti M, Jouanne M, Balkanski M, Ouvrard G and Benedek G 1987 Phys. Rev. B 35 7097
[28] Rehman Z U, Muhammad Z, Moses O A, Zhu W, Wu C, He Q, Habib M and Song L 2018 Micromachines 9 292
[29] Wildes A R, Rule K C, Bewley R I, Enderle M and Hicks T J 2012 J. Phys.: Condens. Matter 24 416004
[30] Joy P A and Vasudevan S 1992 Phys. Rev. B 46 5425
[31] Mayorga-Martinez C C, Sofer Z, Sedmidubský D, Huber Š, Eng A Y S and Pumera M 2017 ACS Appl. Mater. Interfaces 9 12563
[1] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[2] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[3] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[4] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[5] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[6] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[7] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[8] Atomically flat surface preparation for surface-sensitive technologies
Cen-Yao Tang(唐岑瑶), Zhi-Cheng Rao(饶志成), Qian-Qian Yuan(袁茜茜), Shang-Jie Tian(田尚杰), Hang Li(李航), Yao-Bo Huang(黄耀波), He-Chang Lei(雷和畅), Shao-Chun Li(李绍春), Tian Qian(钱天), Yu-Jie Sun(孙煜杰), Hong Ding(丁洪). Chin. Phys. B, 2020, 29(2): 028101.
[9] Pulse generation of erbium-doped fiber laser based on liquid-exfoliated FePS3
Qing Yin(阴晴), Jin Wang(汪进), Xin-Yao Shi(史鑫尧), Tao Wang(王涛), Jie Yang(杨洁), Xin-Xin Zhao(赵新新), Zhen-Jiang Shen(沈振江), Jian Wu(吴坚), Kai Zhang(张凯), Pu Zhou(周朴), Zong-Fu Jiang(姜宗福). Chin. Phys. B, 2019, 28(8): 084208.
[10] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
[11] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[12] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[13] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
[14] Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature
He Zhang(张贺), Shangsheng Li(李尚升), Taichao Su(宿太超), Meihua Hu(胡美华), Hongan Ma(马红安), Xiaopeng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(5): 058102.
[15] Growth and characterization of CaCu3Ru4O12 single crystal
Wang Rong-Juan, Zhu Yuan-Yuan, Wang Li, Liu Yong, Shi Jing, Xiong Rui, Wang Jun-Feng. Chin. Phys. B, 2015, 24(9): 097501.
No Suggested Reading articles found!