Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054203    DOI: 10.1088/1674-1056/28/5/054203

Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich

Shuai Zhao(赵帅)1, Fangrong Hu(胡放荣)1, Xinlong Xu(徐新龙)2, Mingzhu Jiang(江明珠)1, Wentao Zhang(张文涛)1, Shan Yin(银珊)1, Wenying Jiang(姜文英)1
1 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China;
2 Nanobiophotonic Center, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
Abstract  We experimentally demonstrate an electrically triggered terahertz (THz) dual-band tunable band-pass filter based on Si3N4-VO2-Si3N4 sandwich-structured hybrid metamaterials. The insulator-metal phase transition of VO2 film is induced by the Joule thermal effect of the top metal layer. The finite-integration-time-domain (FITD) method and finite element method (FEM) are used for numerical simulations. The sample is fabricated using a surface micromachining process, and characterized by a THz time-domain-spectrometer (TDS). When the bias current is 0.225 A, the intensity modulation depths at two central frequencies of 0.56 THz and 0.91 THz are about 81.7% and 81.3%, respectively. This novel design can achieve dynamically electric-thermo-optic modulation in the THz region, and has potential applications in the fields of THz communications, imaging, sensing, and astronomy exploration.
Keywords:  tunable band-pass filter      hybrid metamaterials      terahertz      vanadium dioxide (VO2)  
Received:  21 December 2018      Revised:  17 January 2019      Accepted manuscript online: 
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  84.30.Vn (Filters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574059, 61565004, and 11774288), the National Technology Major Special Project, China (Grant No. 2017ZX02101007-003), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFDA139039 and 2017GXNSFBA198116), the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument, China (Grant No. YQ16101), and the Innovation Project of Guangxi Graduate Education, China (Grant Nos. 2018YJCX70, 2018YJCX67, and 2018YJCX74).
Corresponding Authors:  Fangrong Hu     E-mail:

Cite this article: 

Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英) Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich 2019 Chin. Phys. B 28 054203

[1] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2] Kante B, de Lustrac A, Lourtioz J M and Burokur S N 2008 Opt. Express 16 9191
[3] Silveirinha M G, Medeiros C R, Fernandes C A and Costa J R 2010 Phys. Rev. B 81 033101
[4] Olivares I, Sanchez L, Parra J, Larrea R, Griol A, Menghini M, Homm P, Jang L W, van Bilzen B, Seo J W, Locquet J P and Sanchis P 2018 Opt. Express 26 12387
[5] Song Z Y, Wang K, Li J W and Liu Q H 2018 Opt. Express 26 7148
[6] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620
[7] Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[8] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
[9] Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909
[10] Deng L, Li D Z, Liu Z L, Meng Y H, Guo X N and Tian Y H 2017 Chin. Phys. B 26 024209
[11] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[12] Hu F R, Xu X, Li P, Xu X L and Wang Y 2017 Chin. Phys. B 26 074219
[13] Zhu Y H, Vegesna S, Zhao Y, Kuryatkov V, Holtz M, Fan Z Y, Saed M and Bernussi A A 2013 Opt. Lett. 38 2382
[14] Park D J, Shin J H, Park K H and Ryu H C 2018 Opt. Express 26 17397
[15] Hogue M N F, Karaoglan-Bebek G, Holtz M, Bernussi A A and Fan Z Y 2015 Opt. Commun. 350 309
[16] Pashkin A, Kuebler C, Ehrke H, Lopez R, Halabica A, Haglund R F Jr., Huber R and Leitenstorfer A 2011 Phys. Rev. B 83 195120
[17] Eaton M, Catellani A and Calzolari A 2018 Opt. Express 26 5342
[18] Sanphuang V, Ghalichechian N, Nahar N K and Volakis J L 2016 IEEE Trans. Terahertz Sci. Technol. 6 583
[19] Zhou G C, Dai P H, Wu J B, Jin B B, Wen Q Y, Zhu G H, Shen Z, Zhang C H, Kang L, Xu W W, Chen J and Wu P H 2017 Opt. Express 25 17322
[20] Han C R, Parrott E P J, Humbert G, Crunteanu A and Pickwell-MacPherson E 2017 Sci. Rep. 7 12725
[21] Wang S X, Kang L and Werner D H 2017 Sci. Rep. 7 4326
[22] Zhu Y H, Zhao Y, Holtz M, Fan Z and Bernussi A A 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 2373
[23] Hu F R, Zhang L H, Xu X L, Wang Y E, Zou T B and Zhang W T 2015 Opt. Quan. Electron. 47 2867
[24] Azad A K, Taylor A J, Smirnova E and O'Hara J F 2008 Appl. Phys. Lett. 92 011119
[25] COMSOL Inc., [2019-01-17]
[26] Haynes W M 2014 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press)
[27] Gopalakrishnan G, Ruzmetov D and Ramanathan S 2009 J. Mater. Sci. 44 5345
[1] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[2] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[3] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[4] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[5] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[6] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[7] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[8] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[9] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[10] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[11] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[12] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[13] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[14] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[15] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
No Suggested Reading articles found!