Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054202    DOI: 10.1088/1674-1056/28/5/054202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of Airy beams in parity-time symmetric optical lattices

Rui-Hong Chen(陈睿弘)1, Wei-Yi Hong(洪伟毅)2
1 Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou 510631, China;
2 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  

We investigate the dynamics of airy beams propagating in the parity-time (PT) symmetric optical lattices in linear and nonlinear regimes, respectively. For the linear propagation, the position of the channel guided by the PT lattice can be shifted by tuning the lattice frequency. The underlying physical mechanism of this phenomenon is also discussed. An interesting phenomenon is found in the nonlinear regime in that the airy beam becomes a tilt channel with several Rayleigh lengths. These findings create new opportunities for optical steering and manipulations.

Keywords:  parity-time symmetry, Airy beam, nonlinear Schrö      dinger equation, optical lattices  
Received:  22 July 2018      Revised:  02 February 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  43.25.+y (Nonlinear acoustics)  
Corresponding Authors:  Wei-Yi Hong     E-mail:  hongwy@m.scnu.edu.cn

Cite this article: 

Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅) Dynamics of Airy beams in parity-time symmetric optical lattices 2019 Chin. Phys. B 28 054202

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Ahmed Z 2001 Phys. Lett. A 282 343
[3] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095
[4] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[5] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[6] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[7] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2010 Phys. Rev. A 81 063807
[8] Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Opt. Lett. 36 2680
[9] Guo D, Xiao J, Li H and Dong L 2016 Opt. Lett. 41 4457
[10] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[11] Dai C Q and Wang Y Y 2014 Laser Phys. 24 035401
[12] Liu J B, Xie X T, Shan C J, Liu T K, Lee R K and Wu Y 2015 Laser Phys. 25 015102
[13] He Y J, Zhu X, Mihalache D, Liu J L and Chen Z X 2012 Phys. Rev. A 85 013831
[14] Jones H F 2011 J. Phys. A 44 345302
[15] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[16] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207
[17] Siviloglou G A, Broky J and Dogariu A 2007 Phys. Rev. Lett. 99 213901
[18] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[19] Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z G 2011 Opt. Lett. 36 2883
[20] Zheng Z, Zhang B F, Chen H, Ding J and Wang H T 2011 Appl. Opt. 50 43
[21] Baumgartl J, Mazilu M and Dholakia K 2008 Nature Photon. 2 675
[22] Polynkin P, Kolesik M and Moloney J 2009 Phys. Rev. Lett. 103 123902
[23] Polynkin P, Kolesik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229
[24] Rose P, Diebel F, Boguslawski M and Denz C 2013 Optics and Photonics News 24 45
[25] Li J X, Fan X L, Zang W P and Tian J G 2011 Opt. Lett. 36 648
[26] Li J X, Zang W P and Tian J G 2010 Opt. Express 18 7300
[27] Choi D, Lee K, Hong K, Lee I M, Kim K Y and Lee B 2013 Opt. Express 21 18797
[28] Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G and Tzortzakis S 2012 Phys. Rev. A 86 013842
[29] Driben R, Konotop V V and Meier T 2014 Opt. Lett. 39 5523
[30] Pasiskevicius V 2009 Nature Photon. 3 374
[31] Xu Y Q, Zhou G Q, Zhang L J and Ru G Y 2015 Laser Phys. 25 085005
[1] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[4] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[5] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[6] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[7] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[8] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[9] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[10] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[11] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[12] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[15] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
No Suggested Reading articles found!