Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 053102    DOI: 10.1088/1674-1056/28/5/053102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tensile-strain induced phonon splitting in diamond

Meifang Pu(蒲梅芳)1, Feng Zhang(张峰)1, Shan Liu(刘珊)1, Tetsuo Irifune(入舩徹男)2, Li Lei(雷力)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
Abstract  

The first-order Raman spectroscopy of diamond exhibits splitting and redshift after the burst of high-pressure (160-200 GPa) and high-temperature (~2000 K). The observed longitudinal optical (LO) and the transverse optical (TO) splitting of Raman phonon is related to the tensile-strain induced activation of the forbidden or silent Raman modes that arise in the proximity of the Brillouin zone center.

Keywords:  diamond      tensile-strain      phonon splitting      Brillouin zone  
Received:  21 January 2019      Revised:  22 March 2019      Published:  05 May 2019
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  61.43.-j (Disordered solids)  
  62.20.M- (Structural failure of materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11774247).

Corresponding Authors:  Li Lei     E-mail:  lei@scu.edu.cn

Cite this article: 

Meifang Pu(蒲梅芳), Feng Zhang(张峰), Shan Liu(刘珊), Tetsuo Irifune(入舩徹男), Li Lei(雷力) Tensile-strain induced phonon splitting in diamond 2019 Chin. Phys. B 28 053102

[1] Lei L, Ohfuji H, Irifune T, Qin J, Zhang X and Shinmei T 2012 J. Appl. Phys. 112 043501
[2] Bickford F R 1984 J. Chem. Educ. 61 401
[3] Wei L, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
[4] Ramdas A K, Rodriguez S, Grimsditch M, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 71 189
[5] Angus J C and Hayman C C 1988 Science 241 913
[6] Tubino R and Birman J L 1977 Phys. Rev. B 15 5843
[7] O'Brian L C, Kubicek R L and O'Brian J J 1994 J. Chem. Educ. 71 759
[8] Aponik A, Marchozzi E, Johnston C and Wigal C T 1998 J Chem. Educ. 75 465
[9] Kulda J, Kainzmaier H, Strauch D, Dorner B, Lorenzen M and Krisch M 2002 Phys. Rev. B 66 241202
[10] Knight D S and White W B 1989 J. Mater. Res. 4 385
[11] Chen G, Balents L and Schnyder A P 2009 Phys. Rev. Lett. 102 096406
[12] Cerdeira F, Buchenauer C J, Pollak F H and Cardona M 1972 Phys. Rev. B. 5 580
[13] Nielsen O F, Shabanova E and Nissum M 2000 J. Chem. Educ. 77 633
[14] Boppart H, van Straaten J and Silvera I F 1985 Phys. Rev. B 32 1423
[15] Hanfland M, Syassen K, Fahy S, Louie S G and Cohen M L 1985 Phys. Rev. B 31 6896
[16] Lin J F, Santoro M, Struzhkin V V, Mao H K and Hemley R J 2004 Rev. Sci. Instrum. 75 3302
[17] Pantea C, Qian J, Voronin G A and Zerda T W 2002 J. Appl. Phys. 91 1957
[18] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516
[19] Kobashi K, Nishimura K, Kawate Y and Horiuchi T 1988 Phys. Rev. B 38 4067
[20] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[21] Feng L H, Hu Q W, Lei L, Fang L M, Qi L, Zhang L L and Xia Y H 2018 Chin. Phys. B 27 026201
[22] Wagner J, Ramsteiner M, Wild C and Koidl P 1991 Phys. Rev. B 40 1817
[23] Nishitani-Gamo M, Ando T, Yamamoto K, Watanabe K, Denning P A, Sato Y and Sekita M 1997 Appl. Phys. Lett. 70 1530
[24] Solin S A and Ramdas A K 1970 Phys. Rev. B 1 1687
[25] Wu Q, Yu L, Ma Y, Liao Y, Fang R, Zhang L and Wang K 2003 J. Appl. Phys. 93 94
[26] Poizot P, Laruelle S, Grugeon S, Dupont L and Tarascon J M 2000 Nature 407 496
[27] Abdula D, Nguyen K T, Kang K, Fong S, Ozel T, Cahill D G and Shim M 2011 Phys. Rev. B 83 205419
[28] Wagner J, Wild C and Koidl P 1991 Appl. Phys. Lett. 59 779
[29] Okada K, Kanda H, Komatsu S and Matsumoto S 2000 J. Appl. Phys. 88 1674
[1] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[2] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[3] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[4] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[5] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[6] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[7] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[8] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[9] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[10] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[11] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[12] Micron-sized diamond particles containing Ge-V and Si-V color centers
Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陈成克), Ying-Shuang Mei(梅盈爽), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2019, 28(7): 076103.
[13] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[14] Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond
Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Kun Ma(马堃), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江), Feng-Jian Jiang(蒋峰建). Chin. Phys. B, 2019, 28(4): 047601.
[15] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
No Suggested Reading articles found!