Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037701    DOI: 10.1088/1674-1056/28/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method

Runlan Zhang(张润兰)1, Shuaishuai Li(李帅帅)1, Changle Chen(陈长乐)2, Li-An Han(韩立安)3, Shanxin Xiong(熊善新)1
1 College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
2 Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710072, China;
3 College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract  

Orthorhombic YFeO3 thin film was prepared on La0.67Sr0.33MnO3/LaAlO3 substrate by a sol-gel spin-coating method. The structures of the YFeO3/La0.67Sr0.33MnO3/LaAlO3 (YFO/LSMO/LAO) sample were detected by x-ray diffraction pattern, Raman spectrometer, scanning electron microscopy, and atomic force microscope. The local ferroelectric polarization switching properties of the orthorhombic YFO film were confirmed by piezoresponse force microscopy (PFM) for the first time. The results show that the YFO film deposited on LSMO/LAO possesses orthorhombic structure, with ultra-fine crystal grains and flat surface. The leakage current of the YFO film is 8.39×10-4 A·cm-2 at 2 V, with its leakage mechanism found to be an ohmic behavior. PFM measurements indicate that the YFO film reveals weak ferroelectricity at room temperature and the local switching behavior of ferroelectric domains has been identified. By local poling experiment, polarization reversal in the orthorhombic YFO film at room temperature was further observed.

Keywords:  multiferroics      YFeO3 thin film      orthorhombic structure      piezoresponse force microscopy  
Received:  12 September 2018      Revised:  26 November 2018      Accepted manuscript online: 
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61471301), Natural Science Basic Research Program of Shaanxi, China (Grant No. 2017JQ5083), and PhD Research Startup Foundation of Xi'an University of Science and Technology, China (Grant No. 2017QDJ044).

Corresponding Authors:  Runlan Zhang     E-mail:  zrlan_69@163.com

Cite this article: 

Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新) Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method 2019 Chin. Phys. B 28 037701

[1] Spaldin N A, Cheong S W and Ramesh R 2010 Phys. Today 63 38
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Pyatakov A P and Zvezdin A K 2012 Phys.-Usp. 55 557
[4] Udalov O G, Chtchelkatchev N M and Beloborodov I S 2014 Phys. Rev. B 89 174203
[5] Raymond-Herrera O, Góngora-Lugo P, Ostos C, Curiel-Alvarez M, Bueno-Baques D, Machorro-Mejia R, Mestres-Vila L, Font-Hernández R, Portelles-Rodriguez J and Siqueiros J M 2012 MRS Proc. 1454 51
[6] Maiti R, Basu S and Chakravorty D 2009 J. Magn. Magn. Mater. 321 3274
[7] Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T H and Tokura Y 2009 Nat Mater. 8 558
[8] Tokunaga Y, Iguchi S, Arima T and Tokura Y 2008 Phys. Rev. Lett. 101 097205
[9] Lee J H, Jeong Y K, Park J H, Oak M A, Jang H M, Son J Y and Scott J F 2011 Phys. Rev. Lett. 107 117201
[10] Jeong Y K, Lee J H, Ahn S J, Song S W, Jang H M, Choi H and Scott J F 2012 J. Am. Chem. Soc. 134 1450
[11] Mathur S, Veith M, Rapalaviciute R, Shen H, Gerardo F G, Waldir L Martins F and Thelma S B 2004 Chem. Mater. 16 1906
[12] Shang M Y, Zhang C Y, Zhang T S, Yuan, Ge L, Yuan H M and Feng S H 2013 Appl. Phys. Lett. 102 062903
[13] Zhang R L, Chen C L, Jin K X, Niu L W, Xing H and Luo B C 2014 J. Electroceram 32 187
[14] Ma Y, Chen X M and Lin Y Q 2008 J. Appl. Phys. 103 124111
[15] Zhang R L, Chen C L, Zhang Y J, Xing H, Dong X L and Jin K X 2015 Chin. Phys. B 24 017701
[16] Zhang R L, Xiong S X, Gong M, Wang X Q, Yu C X and Lan J P 2018 J. Electroceram. 40 156
[17] Coutinho P V, Cunha F and Barrozo P 2017 Solid State Commun. 252 59
[18] Chen C Z, Li Y and Wang B 2013 Solid State Commun. 161 1
[19] Liu Z L, Liu H R, Du G H, Zhang J and Yao K L 2006 J. Appl. Phys. 100 044110
[20] Juan P C, Chen S M and Lee J Y 2004 J. Appl. Phys. 95 3120
[21] Scott J F 2008 J. Phys.: Condens. Matter 20 021001
[22] Murtaza T, Salmani I A, Ali J and Khan M S 2018 J. Mater. Sci.: Mater. Electron. 29 5110
[23] Ren S B, Lu C J, Liu J S, Shen H M and Wang Y N 1996 Phys. Rev. B 54 R14337
[24] Xiao J, Herng T S, Ding J and Zeng K 2017 J. Alloy Compd. 709 535
[25] Jesse S, Baddorf A P and Kalinin S V 2006 Appl. Phys. Lett. 88 062908
[1] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
[2] Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3
Qin Ming-Hui, Lin Lin, Li Lin, Jia Xing-Tao, Liu Jun-Ming. Chin. Phys. B, 2015, 24(3): 037509.
[3] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Liu Yun-Tao, Chen Dong-Feng, Zhang Sen, Zhao Yong-Gang, Wang Fang-Wei. Chin. Phys. B, 2015, 24(12): 127507.
[4] Raman phonons in multiferroic FeVO4 crystals
Zhang An-Min, Liu Kai, Ji Jian-Ting, He Chang-Zhen, Tian Yong, Jin Feng, Zhang Qing-Ming. Chin. Phys. B, 2015, 24(12): 126301.
[5] Nanoscale domain switching mechanism of Bi3.15Eu0.85Ti3O12 thin film under the different mechanical forces
Zhu Zhe, Chen Yu-Bo, Zheng Xue-Jun. Chin. Phys. B, 2015, 24(10): 107702.
[6] Ferroelectricity in hexagonal YFeO3 film at room temperature
Zhang Run-Lan, Chen Chang-Le, Zhang Yun-Jie, Xing Hui, Dong Xiang-Lei, Jin Ke-Xin. Chin. Phys. B, 2015, 24(1): 017701.
[7] Structural and physical properties of BiFeO3 thin films epitaxially grown on SrTiO3 (001) and polar (111) surfaces
He Shu-Min, Liu Guo-Lei, Zhu Da-Peng, Kang Shi-Shou, Chen Yan-Xue, Yan Shi-Shen, Mei Liang-Mo. Chin. Phys. B, 2014, 23(3): 036801.
[8] Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity
Gu Yan-Hong, Liu Yong, Yao Chao, Ma Yan-Wei, Wang Yu, Chan Helen Lai-Wah, Chen Wan-Ping. Chin. Phys. B, 2014, 23(3): 037501.
[9] Multiferroicity in B-site ordered double perovskite Y2MnCrO6
Fang Yong, Yan Shi-Ming, Qiao Wen, Wang Wei, Wang Dun-Hui, Du You-Wei. Chin. Phys. B, 2014, 23(11): 117501.
[10] Dielectric loss of half-doped manganite La0.5Ca0.5MnO3
Cao Xian-Sheng, Ji Gao-Feng, Luo Bing-Cheng, Li Feng. Chin. Phys. B, 2013, 22(8): 087702.
[11] Bipolar resistive switching in BiFe0.95Zn0.05O3 films
Yuan Xue-Yong, Luo Li-Rong, Wu Di, Xu Qing-Yu. Chin. Phys. B, 2013, 22(10): 107702.
[12] Multiferroic ZnO obtained by substituting oxygen with nitrogen
Xu Qing-Yu, Wen Zheng, Gao Jin-Long, Wu Di, Qiu Teng, Tang Shao-Long, Xu Ming-Xiang. Chin. Phys. B, 2011, 20(8): 087505.
[13] Ab initio study on magnetoelectric and electronic properties in Pb2TiVO6
Feng Hong-Jian, Liu Fa-Min. Chin. Phys. B, 2009, 18(6): 2487-2491.
[14] Study of superstructure II in multiferroic BiMnO3
Ge Bing-Hui, Li Fang-Hua, Li Xue-Ming, Wang Yu-Mei, Chi Zhen-Hua, Jin Chang-Qing. Chin. Phys. B, 2008, 17(9): 3163-3169.
[15] Multiferroic behaviour of epitaxial NiFe2O4--BaTiO3 heterostructures
Zhang Yi, Deng Chao-Yong, Ma Jing, Lin Yuan-Hua, Nan Ce-Wen. Chin. Phys. B, 2008, 17(10): 3910-3916.
No Suggested Reading articles found!