Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 036101    DOI: 10.1088/1674-1056/28/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study

Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅)
Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aircraft Airworthiness and Repair Key Laboratory of Tianjin, School of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
Abstract  

The structural, mechanical, electronic, mechanical anisotropy, and thermal properties of boron nitride (BN) polymorphs, such as B4N4-I and B4N4-Ⅱ, are investigated under ambient pressure utilizing first-principles generalized gradient approximation calculations using an ultrasoft pseudopotential scheme. The phonon spectra and elastic constants reveal that B4N4-I is dynamically and mechanically stable at the pressure of 0 GPa and temperature of 0 K. Anisotropic calculations indicate that both B4N4-I and B4N4-Ⅱ exhibit higher anisotropy of Young's modulus than cubic BN (c-BN). B4N4-Ⅱ and B4N4-I present indirect and wide band gaps of 5.32 eV and 4.86 eV, respectively. In addition, B4N4-I is more brittle than B4N4-Ⅱ. Moreover, the minimum thermal conductivity, κmin, of B4N4-Ⅱ at 300 K is 1.92 W/(cm·K), which is slightly higher than those of B4N4-I and c-BN (1.84 W/(cm·K) and 1.83 W/(cm·K), respectively. However, κmin of B4N4-I is slightly higher than that of c-BN.

Keywords:  BN polymorphs      mechanical properties      electronic properties      mechanical anisotropic properties     
Received:  09 September 2018      Published:  05 March 2019
PACS:  61.50.-f (Structure of bulk crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Cn (Elemental semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61601468), the Fundamental Research Funds for the Central Universities, China (Grant No. 3122014C024), and the Fund for Scholars of Civil Aviation of the University of China (Grant No. 2013QD06X).

Corresponding Authors:  Peng Wang     E-mail:  wangpengcauc@163.com

Cite this article: 

Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅) Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study 2019 Chin. Phys. B 28 036101

[1] Wentorf R H 1957 J. Chem. Phys. 26 956
[2] Ma Z Y, Han Z, Liu X H, Yu X H, Wang D Y and Tian Y 2016 Nanomaterials 7 3
[3] Hromadová L and Martoňák R 2011 Phys. Rev. B 84 224108
[4] Kuzubov A A, Tikhonova L V and Fedorov A S 2014 Phys. Status Solidi B 251 1282
[5] Germaneau E, Su G and Zheng Q R 2013 J. Phys.: Condens. Matter 25 125504
[6] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q and Zhang D Y 2014 Comput. Mater. Sci. 85 80
[7] Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869
[8] Jiang X, Zhao J J and Ahuja R 2013 J. Phys.: Condens. Matter 25 122204
[9] Dai J, Wu X J, Yang J L and Zeng X C 2014 J. Phys. Chem. Lett. 5 393
[10] Doll K, Schön J C and Jansen M 2008 Phys. Rev. B 78 144110
[11] Tang X, Hao J and Li Y W 2015 Phys. Chem. Chem. Phys. 17 27821
[12] Reshak A H, Khan S A and Auluckc S 2014 RSC Adv. 4 11967
[13] Wang X L 2012 J. Chem. Phys. 137 184506
[14] Wang X L, Bao K, Tian F B, Meng X, Chen C B, Dong B W, Li D, Liu B B and Cui T 2010 J. Chem. Phys. 133 044512
[15] Gong Y T, Li M M and Wang Y 2015 ChemSusChem 8 931
[16] Fan Q Y, Chai C C, Wei Q and Yang Y T 2016 Materials 9 427
[17] Mo S D, Ouyang L, Ching W Y, Tanaka I, Koyama Y and Riedel R 1999 Phys. Rev. Lett. 83 5046
[18] Qiao L P and Jin Z 2017 Materials 10 1413
[19] Zhang M G, Yan H Y, Zheng B B and Wei Q 2015 Sci. Rep. 5 15481
[20] Li Y W, Li Q and Ma Y M 2011 EPL 95 66006
[21] Zhou S and Zhao J J 2016 Nanoscale 8 8910
[22] Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X and Esfahani M M D 2016 Phys. Chem. Chem. Phys. 18 1859
[23] Zhang X X, Wang Y C, Lv J, Zhu C Y, Li Q, Zhang M, Li Q and Ma Y M 2013 J. Chem. Phys. 138 114101
[24] Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108
[25] Fan Q Y, Wei Q, Chai C C, Zhang M G, Yan H Y, Zhang Z X, Zhang J Q and Zhang D Y 2015 Comput. Mater. Sci. 97 6
[26] Fan Q Y, Wei Q, Chai C C, Yan H Y, Zhang M G, Lin Z Z, Zhang Z X, Zhang J Q and Zhang D Y 2015 J. Phys. Chem. Solids 79 89
[27] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[28] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[29] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892R
[31] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Petrescu M I 2004 Diamond Relat. Mater. 13 1848
[36] Li X Z and Xing M J 2018 Comput. Mater. Sci. 143 32
[37] Automatic - Flow for Materials Discovery
[38] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[39] Xing M J, Li B H, Yu Z T and Chen Q 2015 J. Mater. Sci. 50 7104
[40] Hill R 1952 Proc. Phys. Soc. A 65 349
[41] Ma Z Y, Yan F, Wang S X, Jia Q Q, Yu X H and Shi C L 2017 Chin. Phys. B 26 126105
[42] Fan Q Y, Chai C C, Wei Q, Zhou P K and Yang Y T 2017 Mater. Design. 132 539
[43] Fan Q Y, Zhang W Z, Yun S N, Xu J and Song Y X 2018 Chem. Eur. J. 24 17280
[44] Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
[45] Lyakhov A O and Oganov A R 2011 Phys. Rev. B 84 092103
[46] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[47] Xing M J, Li B H, Yu Z T and Chen Q 2016 RSC Adv. 6 32740
[48] Bu H X, Zhao M W, Dong W Z, Lu S W and Wang X P 2014 J. Mater. Chem. C 2 2751
[49] Bu H, Zhao M, Xi Y, Wang X, Peng H, Wang C and Liu X 2012 Europhys. Lett. 100 56003
[50] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405
[51] Pugh S F 1954 Lond. Edinb. Dublin. Philos. Mag. J. Sci. 45 823
[52] Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
[53] Anderson O L 1963 J. Phys. Chem. Solids. 24 909
[54] Panda K B and Ravi K S 2006 Comput. Mater. Sci. 35 134
[55] Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C and Evans K E 2010 Comput. Phys. Commun. 181 2102
[56] Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2014 Comput. Mater. Sci. 83 27
[57] Sun M L, Chou J, Gao J F, Cheng Y, Hu A, Tang W C and Zhang G 2018 ACS Omega 3 8514
[58] Sun M L, Ren Q Q, Wang S K, Yu J and Tang W C 2016 J. Phys. D 49 445305
[59] Fan Q Y, Chai C C, Wei Q, Zhou P K, Zhang J Q and Yang Y T 2016 Materials 9 284
[60] Sun M L, Chou J, Shi L H, Gao J F, Hu A, Tang W C and Zhang G 2018 ACS Omega 3 5971
[61] Tang W C, Sun M L, Ren Q Q, Zhang Y J, Wang S K and Yu J 2016 RSC Adv. 6 95846
[62] Xu X Y, Chai C C, Fan Q Y and Yang Y T 2017 Chin. Phys. B 26 046101
[63] Sun M L, Chou J, Zhao Y M, Yu J and Tang W C 2017 Phys. Chem. Chem. Phys. 19 28127
[64] Heyd J, Peralta J E, Scuseria G E and Martin R L 2005 J. Chem. Phys. 123 174101
[65] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[66] Fan Q Y, Niu R, Zhang W Z, Zhang W, Ding Y C and Yun S N 2019 ChemPhysChem 20 128
[67] Fan Q Y, Chai C C, Wei Q, Wong K Q, Liu Y Q and Yang Y T 2018 J. Mater. Sci. 53 2785
[1] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[2] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[3] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[4] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2020, 29(10): 108401.
[5] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[6] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[7] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[8] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[9] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[10] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[11] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[12] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[13] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[14] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[15] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
No Suggested Reading articles found!