Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028101    DOI: 10.1088/1674-1056/28/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy

Jing Zhang(张静)1,2, Hongliang Lv(吕红亮)1, Haiqiao Ni(倪海桥)2, Shizheng Yang(杨施政)1, Xiaoran Cui(崔晓然)1,2, Zhichuan Niu(牛智川)2, Yimen Zhang(张义门)1, Yuming Zhang(张玉明)1
1 School of Microelectronics, Xidian University and the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xi'an 710071, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The growth of the InAs film directly on the Si substrate deflected from the plane (100) at 4° towards (110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the electron mobility and surface topography has been investigated for a set of samples. The results show that the highest electron mobility is 4640 cm2/V·in the sample, in which the 10-nm InAs nucleation layer is grown at a low temperature of 320℃ followed by ramping up to 560℃, and the nucleation layer was annealed for 15 min and the second layer of InAs is grown at 520℃. The influence of different buffer layers on the electron mobility of the samples has also been investigated, which shows that the highest electron mobility of 9222 cm2/V·at 300 K is obtained in the sample grown on a thick and linearly graded InGaAlAs metamorphic buffer layer deposited at 420℃.
Keywords:  InAs      Si      high electron mobility      growth temperature      InGaAlAs metamorphic buffer  
Received:  06 November 2018      Revised:  07 December 2018      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: Project supported by the National Defense Advanced Research Project, China (Grant No. 315 xxxxx301), National Defense Innovation Program, China (Grant No. 48xx4), the National Key Technologies Research and Development Program of China (Grant No. 2018YFA03xxx01), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ2017xxx2), and the National Natural Science Foundation of China (Grant No. 6150xxx6).
Corresponding Authors:  Hongliang Lv, Haiqiao Ni     E-mail:  hllv@mail.xidian.edu.cn;nihq@semi.ac.cn

Cite this article: 

Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明) Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy 2019 Chin. Phys. B 28 028101

[1] Martin H, Mark V D, Blandine D, Richard O, Georgios V, Gerben D, Aryan A, Ta-Kun C, Chih-Hua H, Peter R, Tim V, Yee-Chia Y and Matthias P 2017 Sci. Rep. 7 14632
[2] Huang J, Li M, Zhao Q, Gu W W and Liu K M 2015 Chin. Phys. B 24 087305
[3] Wang J, Hu H Y, Deng C, He Y R, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. B 24 028101
[4] Yan X, Zhang X, Li J S, Lv X L, Ren X M and Huang Y Q 2013 Chin. Phys. B 22 076102
[5] Ko K M, Seo J H, Kim D E, Lee S T, Noh Y K, Kim M D and Oh J E 2009 Nanotechnology 20 225201
[6] Smita J, Xueyan S, Babcock S E, Kuech T F, Dane W, Bin W, Fay P and Alan S 2008 J. Crystal Growth 310 4772
[7] Méndez-García V H, Saucedo-Zeni N, Balderas R and Lopez-Lopez M 2009 J. Crystal Growth 311 1451
[8] Reynald A, Mickael M, Jeremy M, Patrice G, Sylvain D, Tiphaine C, Franck B, Frederique D, Yann B and Thierry B 2018 Thin Solid Films 645 119
[9] Takaaki M, Kazutaka M, Neul H, Akihiro O, Andrea C, Stefano S, Takeshi N, Yoshiki S, Takashi K and Kazuaki S 2016 Crystal Growth 16 5412
[10] Sepideh G G, Martin B, Kimberly A D and Lars-Erik W 2011 J. Crystal Growth 332 12
[11] Caroff P, Jeppsson M, Wheeler D, Keplinger M, Mandl B, Stangl J, Seabaugh A, Bauer G and Wernersson L E 2008 J. Phys. Conf. Ser. 100 042017
[12] Keye S, Daehwan J, Chen S, Alan L, John B and Andreas B 2017 IEEE Photonics Conference
[13] Pei-Chin C, Wei-Jen H, Nien-Tze Y, Chao-Ching C, You-Ru L, Chih-Hsin K, Clement H W and Jen-Inn C 2013 J. Vac. Sci. Technol. B 31 061207
[14] Mingchu T, Siming C, Jiang W, Qi J, Vitaliy G D, Mourad B, Yuriy I M, Gregory J S, Alwyn S and Huiyun L 2014 Opt. Express. 22 10
[15] Xia L, Hong J, Guoqing M, Hang S, Lianzhen C, Zhiming L and Dabing L 2010 J. Alloys Compd. 506 530
[16] Hoke W E, Lemonias P J, Mosca J J, Lyman P S, Torabi A, Marsh P F, McTaggart R A, Lardizabal S M and Hetzler K 1999 J. Vac. Sci. Technol. B 17 1131
[17] Sun Y, Thompson S E and Nishida T 2007 J. Appl. Phys. 101 104503
[18] Enzo U, Siddhartha D, Gerhard K, Viktor S, Hans K and Siegfried S 2007 Trans. Electron. Dev. 54 9
[1] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[4] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[5] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[6] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[7] Floquet topological phase transition in two-dimensional quadratic band crossing system
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏). Chin. Phys. B, 2021, 30(6): 067304.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[10] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[11] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[12] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[13] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[14] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[15] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
No Suggested Reading articles found!