Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027501    DOI: 10.1088/1674-1056/28/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment

B Boughazi, M Boughrara, M Kerouad
Laboratoire Physique des Matériaux et Modélisation des Systémes(LP2 MS), Unité Associée au CNRST-URAC:08, Faculty of Sciences, University Moulay Ismail, B P 11201, Zitoune, Meknes, Morocco
Abstract  

Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising film with different single-ion anisotropies are investigated, by the use of Monte Carlo simulation based on heat bath algorithms. The effects of the crystal-fields and the surface coupling on the phase diagrams are investigated in detail and the obtained phase diagrams are presented. Depending on the Hamiltonian parameters, the system exhibits both second- and first-order phase transitions besides tricritical point, triple point, and isolated critical end point.

Keywords:  Monte Carlo simulation      thin film      phase diagrams      magnetic properties  
Received:  12 June 2018      Revised:  26 November 2018      Published:  05 February 2019
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.40.Mg (Numerical simulation studies)  
  75.70.Rf (Surface magnetism)  
  75.10.Hk (Classical spin models)  
Corresponding Authors:  B Boughazi     E-mail:  brahim.boughazi@gmail.com

Cite this article: 

B Boughazi, M Boughrara, M Kerouad Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment 2019 Chin. Phys. B 28 027501

[1] Sun X W, Jia C H, Liu X S, Li G Q and Zhang W F 2018 Chin. Phys. B 27 047304
[2] Di Y N, Xu X M, Zhou J J and Doi M 2018 Chin. Phys. B 27 024501
[3] Zhao B, Hu W, Tang X S, Huo W X, Han L L, Zhao M L, Ma Z G, Wang W X, Jia H Q and Chen H 2018 Chin. Phys. B 27 047803 2018 Chin. Phys. B 27 047803
[4] Wang Z, Xiao R Z, Zou C W, Xie W, Tian C X, Xue S W, Liu G A, Devi N and Fu D J 2018 Chin. Phys. B 27 047901
[5] Zhang Y, Xu J, Zhou D Y, Wang H H, Lu W Q and Choi C K 2018 Chin. Phys. B 27 048103
[6] Elmers H J 1995 Int. J. Mod. Phys. B 9 3115
[7] Jiang Q and Tao Y M 2005 Phys. Lett. A 336 216
[8] Charilaou M and Hellman F 2013 Phys. Rev. B 87 184433
[9] Magoussi H, Boughazi B and Kerouad M 2018 J. Supercond. Nov. Magn. 31 3817
[10] Kaneyoshi T 2014 Physica B 436 208
[11] Kaneyoshi T 2014 Physica E 59 50
[12] Kaneyoshi T 2013 Physica E 53 14
[13] Kaneyoshi T 2013 Physica B 408 126
[14] Kaneyoshi T 2013 Physica B 414 72
[15] Boughazi B, Boughrara M and Kerouad M 2014 Physica A 401 308
[16] ElAouad N, Moutie A and Kerouad M 2001 J. Magn. Magn. Mater. 233 236
[17] Boughazi B, Boughrara M and Kerouad M 2017 Physica A 465 628
[18] Boughazi B, Boughrara M and Kerouad M 2014 Physica A 401 308
[19] Jie L W, Hua X Z, Lun C S and Chin Z C 2013 Physics B 22 027501
[20] Yüksel Y 2014 Physica B 433 96
[21] Ran C, Jin C and Roberts M 1988 J. Appl. Phys. 63 3667
[22] Polak M, Rubinovich L and Deng J 1995 Phys. Rev. Lett. 74 4059
[23] Tang H 1985 Phys. Rev. Lett. 71 444
[24] Boughrara M, Kerouad M and Zaim A 2016 J. Magn. Magn. Mater. 410 218
[25] Stanica N, Stager C V, Cimpoesu M and Andruh M 1998 Polyhedron 17 1787
[26] Abubrig O F, Horvath D, Bobak A and Jascur M 2001 Physica A 296 437
[27] Souza I J, de Arruda P H Z, Godoy M, Craco L and de Arruda A S 2016 Physica A 444 589
[28] Landau D P and Binder K 2004 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge: Cambridge University Press)
[29] Feng Y Q, Jin K J, Ge C, He X, Gu L, Yang Z Z, Guo H Z, Wan Q, He M, Lu H B and Yang G Z 2016 Chin. Phys. Lett. 33 076801
[30] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[31] Štubňa V and Jaščur M 2017 J. Magn. Magn. Mater. 442 364
[32] Keskin M and Ertaş M 2018 Physica A 496 79
[33] Costabile E, Viana J R, Sousa J R and de Arrudac A S 2015 Solid State Commun. 212 30
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[3] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[4] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
[5] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[6] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[7] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[8] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[9] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[10] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[11] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[12] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[13] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser
Du-Xin Qing(卿杜鑫), Shu-Tong Wang(王树同), Shou-Gui Ning(宁守贵), Wei Zhang(张伟), Xiao-Xu Chen(陈晓旭), Hong Zhang(张弘), Guo-Ying Feng(冯国英), Shou-Huan Zhou(周寿桓). Chin. Phys. B, 2020, 29(5): 054208.
No Suggested Reading articles found!