Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024301    DOI: 10.1088/1674-1056/28/2/024301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials

Ying Liu(刘颖)1, Yi-Feng Li(李义丰)1,2, Xiao-Zhou Liu(刘晓宙)3
1 College of Computer Science and Technology, Nanjing Tech University, Nanjing 211800, China;
2 Key Laboratory of Modern Acoustics, Ministry of Education, Nanjing University, Nanjing 210093, China;
3 Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  An underwater acoustic metasurface with sub-wavelength thickness is designed for acoustic wavefront manipulation. In this paper, a pentamode lattice and a frequency-independent generalized acoustic Snell's law are introduced to overcome the limitations of narrow bandwidth and low transmittance. The bulk modulus and effective density of each unit cell can be tuned simultaneously, which are modulated to guarantee the achievement of refractive index profile and high transmission. Here, we actualize anomalous refraction, generation of non-diffracting Bessel beam, sub-wavelength flat focusing, and surface wave conversion by constructing inhomogeneous acoustic metasurface. This design approach has potential applications in medical ultrasound imaging and underwater acoustic communications.
Keywords:  metasurface      frequency-independent      pentamode      high transmission  
Received:  12 October 2018      Revised:  26 November 2018      Published:  05 February 2019
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  68.60.Bs (Mechanical and acoustical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571222 and 11474160), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161009), and the Six-Talent Peaks Project of Jiangsu Province, China.
Corresponding Authors:  Yi-Feng Li     E-mail:  lyffz4637@163.com

Cite this article: 

Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙) Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials 2019 Chin. Phys. B 28 024301

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Ni X, Emani N K, Kildishev A V, Boltasseva A and Shalaev V M 2012 Science 335 427
[3] Sun S, He Q, Xiao S, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[4] Boltasseva A, Kildishev A V and Shalaev V M 2013 Science 339 1232009
[5] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C and Capasso F 2013 Science 340 331
[6] Kuester E F, Mohamed M A, Piket-May M and Holloway C L 2003 IEEE Trans. Anten. Propag. 51 2641
[7] Li Y 2017 Physics 46 721 (in Chinese)
[8] Ahmadi A, Ghadarghadr S and Mosallaei H 2010 Opt. Express 18 123
[9] Memarzadeh B and Mosallaei H 2011 Opt. Lett. 36 2569
[10] Tian Y, Wei Q, Cheng Y, Xu Z and Liu X 2015 Appl. Phys. Lett. 107 333
[11] Díaz-Rubio A and Tretyakov S A 2017 Phys. Rev. B 96 125409
[12] Zhu H and Semperlotti F 2016 Phys. Rev. Lett. 117 034302
[13] Sun H X, Xin F, Yong G, Ren X D and Yuan S Q 2017 Acta. Phys. Sin. 66 244301 (in Chinese)
[14] Su X, Norris A N, Cushing C W, Haberman M R and Wilson P S 2017 J. Acoust. Soc. Am. 141 4408
[15] Li X C and Liu Z Y 2005 Phys. Lett. A 338 413
[16] Khelif A, Choujaa A, Benchabane S, Djafarirouhani B and Laude V 2004 Appl. Phys. Lett. 84 4400
[17] Sun Z, Jia H, Chen Y, Wang Z and Yang J 2018 J. Acoust. Soc. Am. 143 1029
[18] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[19] Liang Z and Li J 2012 Phys. Rev. Lett. 108 114301
[20] Xie Y, Popa B I, Zigoneanu L and Cummer S A 2013 Phys. Rev. Lett. 110 175501
[21] Xie Y, Konneker A, Popa B I and Cummer S A 2013 Appl. Phys. Lett. 103 201906
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[23] Milton G W and Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483
[24] Hladky-Hennio A C, Vasseur J O, Haw G, Croenne C, Haumesser L and Norris A N 2013 Appl. Phys. Lett. 102 144103
[25] Layman C N, Naify C J, Martin T P, Calvo D C and Orris G J 2013 Phys. Rev. Lett. 111 024302
[26] Bückmann T, Thiel M, Kadic M, Schittny R and Wegener M 2014 Nat. Commun. 5 4130
[27] Chen Y, Liu X N, Xiang P and Hu G K 2016 Adv. Mech. 46 382 (in Chinese)
[28] Norris A N and Nagy A J 2011 First International Conference on Phonic Crystal, Metamaterials and Optomechanics, May 29-June 2, 2011, Santa Fe, New Mexico, USA, p. 112
[29] Kadic M, Buckmann T, Schittny R, Gumbsch P and Wegener M 2014 Phys. Rev. Appl. 2 054007
[30] Fokin V, Ambati M, Sun C and Zhang X 2007 Phys. Rev. B 76 144302
[1] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[2] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[3] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[4] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[5] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[6] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[7] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[8] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[9] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[10] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[11] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
[12] Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface
Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯). Chin. Phys. B, 2018, 27(5): 054204.
[13] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[14] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
[15] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
No Suggested Reading articles found!