Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024207    DOI: 10.1088/1674-1056/28/2/024207

Controllable photon echo phase induced by modulated pulses and chirped beat detection

Xian-Yang Zhang(张显扬)1, Shuang-Gen Zhang(张双根)1, Hua-Di Zhang(张化迪)2, Xiu-Rong Ma(马秀荣)1
1 School of Electronic Information Engineering, Tianjin University of Technology, Tianjin 300384, China;
2 Key Laboratory of Film Electronic and Communication Device, Engineering Research Center of Communication Devices of Ministry of Education, Tianjin 300384, China
Abstract  In this paper, we propose a scheme for photon echo chirped detection process composed of additional modulation pulses to obtain controllable geometric phase. The geometric phases are observed and measured by a beat signal between the photon echo field and the chirped field. The chirped detection model reveals that the period of the beat signal increases as the chirped rate and delay time increase. Additionally, a two-fold relationship between the modulation phase and the echo shift phase is obtained. The numerical simulations accord with the theoretical results obtained by the finite difference time domain (FDTD) method.
Keywords:  geometric phase      photon echo      chirped beat detection      Bloch sphere  
Received:  28 August 2018      Revised:  14 October 2018      Published:  05 February 2019
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).
Corresponding Authors:  Shuang-Gen Zhang     E-mail:

Cite this article: 

Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣) Controllable photon echo phase induced by modulated pulses and chirped beat detection 2019 Chin. Phys. B 28 024207

[1] Imai H and Morinaga A 2008 Phys. Rev. A 78 010302
[2] Sellin P B, Strickl, N M, Böttger T, Carlsten J L and Cone R L 2001 Phys. Rev. B 63 155111
[3] Leibfried D, Demarco B and Meyer V 2003 Nature 422 412
[4] Tian M, Chang T, Merkel K D and Randall W 2011 Appl. Opt. 50 6548
[5] Binder R, Hu Y Z, Knorr A, Lindberg M and Koch S W 1994 Coherent Optical Interactions in Semiconductors (New York: Plenum Press) p. 63
[6] Murray J, Li H, Tian M, Babbitt W R and Chang T 2006 J. Opt. Soc. Am. B 23 795
[7] Chang T, Tian M and Barber Z W 2004 J. Lumin. 107 138
[8] Babbitt W R, Barber Z W, Bekker S H, Chase M D, Harrington C and Merkel K D 2014 Laser Phys. 24 094002
[9] Aoki T, Shinohara K and Morinaga A 2001 Phys. Rev. A 63 63611
[10] Mohan R K, Chang T and Tian M 2007 J. Lumin. 127 116
[11] Ma X, Wang S, Liang Y and Shan Y 2015 Appl. Opt. 54 2891
[12] Klaedtke A, Hamm J and Hess O 2004 Mediators of Inflammation 642 75
[1] Majorana stellar representation for mixed-spin ( s, 1/2) systems
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2021, 30(3): 030303.
[2] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[3] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[4] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[5] A method for generating double-ring-shaped vector beams
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农). Chin. Phys. B, 2016, 25(7): 074201.
[6] Rotation of Bloch sphere induced by Lamb shift in open two-level systems
Wang Guo-You, Tang Ning, Liu Ying, Zeng Hao-Sheng. Chin. Phys. B, 2015, 24(5): 050302.
[7] Characteristics of spectral-hole burning in Tm3+:YAG based on the perturbation theory
Zhang Shi-Yu, Ma Xiu-Rong, Zhang Shuang-Gen, Chen-Lei, Wang Xia-Yang, Mu Kuan-Lin, Wang Song. Chin. Phys. B, 2014, 23(6): 060304.
[8] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping, Li Fu-Li. Chin. Phys. B, 2013, 22(3): 030308.
[9] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
Wang Yue-Ming,Du Guan,Liang Jiu-Qing. Chin. Phys. B, 2012, 21(4): 044207.
[10] Fidelity susceptibility and geometric phase in critical phenomenon
Tian Li-Jun, Zhu Chang-Qing, Zhang Hong-Biao, Qin Li-Guo. Chin. Phys. B, 2011, 20(4): 040302.
[11] Geometric phases and quantum phase transitions in inhomogeneous XY spin-chains: Effect of the Dzyaloshinski-Moriya interaction
Wang Lin-Cheng, Yan Jun-Yan, Yi Xue-Xi. Chin. Phys. B, 2010, 19(4): 040512.
[12] Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field
Zhong Wen-Xue, Cheng Guang-Ling, Chen Ai-Xi. Chin. Phys. B, 2010, 19(11): 110310.
[13] Critical entanglement and geometric phase of a two-qubitmodel with Dzyaloshinski--Moriya anisotropic interaction
Li Zhi-Jian, Cheng Lu, Wen Jiao-Jin. Chin. Phys. B, 2010, 19(1): 010305.
[14] Operating a geometric quantum gate by external controllable parameters
Ji Ying-Hua, Cai Shi-Hua, Le Jian-Xin, Wang Zi-Sheng. Chin. Phys. B, 2010, 19(1): 010311.
[15] Experimental verification of Foreman dislocation model
Zhao Chun-Wang, Xing Yong-Ming, Bai Pu-Cun. Chin. Phys. B, 2009, 18(6): 2464-2468.
No Suggested Reading articles found!