Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024205    DOI: 10.1088/1674-1056/28/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system

Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬)
Laser Engineering Research Institute, Beijing University of Technology, Beijing 100124, China
Abstract  Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2 = 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.
Keywords:  azimuthal polarization      thermally induced birefringence      Nd:YAG amplifiers      picosecond laser  
Received:  13 November 2018      Revised:  04 December 2018      Published:  05 February 2019
PACS:  42.25.Lc (Birefringence)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  29.25.Lg (Ion sources: polarized)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1631240), the Education Commission Program of Beijing, and Beijing Natural Science Foundation (Grant No. KZ201510005001).
Corresponding Authors:  Meng Chen     E-mail:  chenmeng@bjut.edu.cn

Cite this article: 

Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬) Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system 2019 Chin. Phys. B 28 024205

[1] Meier M, Romano V and Feurer T 2007 Appl. Phys. A 86 329
[2] Weber R, Michalowski A, et al. 2011 Phys. Proc. 12 21
[3] Chang C, Chen X and Pu J 2017 Opt. Rev. 24 188
[4] Martynas B, Mindaugas G, Peter G K and G 2011 Appl. Phys. Lett. 98 201101
[5] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2008 Appl. Opt. 46 3304
[6] Moshe I and Jackel S 2005 J. Opt. Soc. Am. B 22 1228
[7] Bourderionnet J, Brignon A, Huignard J P and Frey R 2002 Opt. Commun. 204 299
[8] Beresna M, Gecevicius M, Kazansky P and Gertus T 2011 Appl. Phys. Lett. 98 233901
[9] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2008 Opt. Commun. 281 732
[10] Lin D, Daniel J M O, Gecevičius M, Beresna M, Kazansky P G and Clarkson W A 2014 Opt. Lett. 39 5359
[11] Kampfe T, Tonchev S, Tishchenko A V, Gergov D and Parriaux O 2012 Opt. Express 20 5392
[12] Xia K G, Ueda K I and Li J L 2012 Appl. Phys. B 107 47
[13] Long M L, Chen M and Li G 2017 Chin. Opt. Lett. 15 49
[14] Meir A, Machavariani G, Moshe I, Jackel S and Lumer Y 2008 Appl. Opt. 47 3886
[15] Koechner W andRice D 1970 IEEE J. Quantum Electron. 6 557-566
[16] Loescher A, Negel J P, Graf T and Ahmed M A 2012 Opt. Lett. 40 5758
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[3] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[4] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[5] Sub-external cavity effect and elimination method in laser self-mixing interference wave plate measurement system
Haisha Niu(牛海莎), Yanxiong Niu(牛燕雄), Jianjun Song(宋建军). Chin. Phys. B, 2018, 27(2): 024201.
[6] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[7] Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2017, 26(7): 074212.
[8] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[9] Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile
M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki. Chin. Phys. B, 2015, 24(12): 124205.
[10] Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence
Zhou Ji, He Zhi-Hong, Ma Yu, Dong Shi-Kui. Chin. Phys. B, 2015, 24(9): 094203.
[11] Walk-off reduction, using an external optical plate and Bessel—Gaussian interaction
Masoume Mansouri, Mohsen Askarbioki, Saeed Ghavami Sabouri, Alireza Khorsandi. Chin. Phys. B, 2015, 24(2): 024216.
[12] Designing of a polarization beam splitter for the wavelength of1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion
Bao Ya-Jie, Li Shu-Guang, Zhang Wan, An Guo-Wen, Fan Zhen-Kai. Chin. Phys. B, 2014, 23(10): 104218.
[13] Polarization characteristics of chiral photonic crystal fibers with an elliptical hollow core
Li She, Li Jun-Qing, Cao Yu-Sheng. Chin. Phys. B, 2013, 22(11): 117806.
[14] An all-optical buffer based on polarization rotation in an EAM
Wang Kui-Ru, Kuang Hai, Wang Yong-Jun, Yuan Jin-Hui, Yan Bin-Bin. Chin. Phys. B, 2013, 22(8): 084201.
[15] Semi-classical theory and experimental research for polarization flipping in a single frequency laser with feedback effect
Chen Wen-Xue, Zhang Shu-Lian, Zhang Peng, Zeng Zhao-Li. Chin. Phys. B, 2012, 21(9): 090301.
No Suggested Reading articles found!