Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 018102    DOI: 10.1088/1674-1056/28/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition

Ya-Chao Zhang(张雅超)1, Zhi-Zhe Wang(王之哲)2, Rui Guo(郭蕊)1, Ge Liu(刘鸽)1, Wei-Min Bao(包为民)3, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3. School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China
Abstract  

Pulsed metal organic chemical vapor deposition was employed to grow nearly polarization matched InAlGaN/GaN heterostructures. A relatively low sheet carrier density of 1.8×1012 cm-2, together with a high electron mobility of 1229.5 cm2/V·s, was obtained for the prepared heterostructures. The surface morphology of the heterostructures was also significantly improved, i.e., with a root mean square roughness of 0.29 nm in a 2 μm×2 μm scan area. In addition to the improved properties, the enhancement-mode metal–oxide–semiconductor high electron mobility transistors (MOSHEMTs) processed on the heterostructures not only exhibited a high threshold voltage (VTH) of 3.1 V, but also demonstrated a significantly enhanced drain output current density of 669 mA/mm. These values probably represent the largest values obtained from the InAlGaN based enhancement-mode devices to the best of our knowledge. This study strongly indicates that the InAlGaN/GaN heterostructures grown by pulsed metal organic chemical vapor deposition could be promising for the applications of novel nitride-based electronic devices.

Keywords:  InAlGaN      enhancement-mode      metal-oxide-semiconductor high electron mobility transistor      threshold voltage  
Received:  25 August 2018      Revised:  22 October 2018      Published:  25 January 2019
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201700184) and the National Key Research and Development Program of China (Grant Nos. 2016YFB0400105 and 2017YFB0403102).

Corresponding Authors:  Ya-Chao Zhang     E-mail:  xd_zhangyachao@163.com
About author:  73.40.Kp; 81.05.Ea; 85.30.De

Cite this article: 

Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition 2019 Chin. Phys. B 28 018102

[1] Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
[2] Wang Y G, Feng Z H, Lv Y J, Tan X, Dun S B, Fang Y L and Cai S J 2016 Chin. Phys. B 25 107106
[3] Li J, Lv Y, Li C, Ji Z, Pang Z, Xu X and Xu M 2017 Chin. Phys. B 26 098504
[4] Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
[5] Lu B, Saadat O I and Palacios T 2010 IEEE Electron Device Lett. 31 990
[6] Hahn H, Lükens G, Ketteniss N, Kalisch H and Vescan A 2011 Appl. Phys. Express 4 114102
[7] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[8] Cai Y, Zhou Y G, Lau K M and Chen K J 2006 IEEE Trans. Electron. Devices 53 2207
[9] Wang R, Cai Y, Tang W, Lau K M and Chen K J 2006 EEE Electron. Device Lett. 27 633
[10] Deguchi T, Kikuchi T, Arai M and Yamasaki K 2012 IEEE Electron Device Lett. 33 1249
[11] Mizutani T, Yamada H, Kishimoto S and Nakamura F 2013 J. Appl. Phys. 113 034502
[12] Wang M, Wang Y, Zhang C, Xie B, Wen C, Wang J, Hao Y L, Wu W G, Chen K J and Shen B 2014 IEEE Trans. Electron. Devices 61 2035
[13] Liu Y, Egawa T and Jiang H 2006 Electron. Lett. 42 884
[14] Ketteniss N, Askar A, Reuters B, Noculak A, Hollyänder B, Kalisch H and Vescan A 2012 Semicond. Sci. Technol. 27 055012
[15] Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H and Vescan A 2012 Semicond. Sci. Technol. 27 055004
[16] Ketteniss N, Behmenburg H, Hahn H, Noculak A, Holländer B, Kalisch H, Heuken M and Vescan A 2012 IEEE Electron Device Lett. 33 519
[17] Reuters B, Wille A, Ketteniss N, Hahn H, Hollyänder B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
[18] Jena D, Simon J, Wang A, Cao Y, Goodman K, Verma J, Ganguly S, Li G, Karda K, Protasenko V, Lian C, Kosel T, Fay P and Xing H 2011 Phys. Status Solidi A 208 1511
[19] Liu Y, Jiang H, Arulkumaran S, Egawa T, Zhang B and Ishikawa H 2005 Appl. Phys. Lett. 86 223510
[20] Xue J, Hao Y, Zhou X, Zhang J, Yang C, Ou X, Shi L, Wang H, Yang L and Zhang J 2011 J. Cryst. Growth 314 359
[21] Zhang Y, Zhou X, Xu S, Wang Z, Chen Z, Zhang J, Zhang J and Hao Y 2015 AIP Adv. 5 127102
[22] Zhang Y, Zhou X, Xu S, Chen D, Wang Z, Wang X, Zhang J, Zhang J and Hao Y 2016 Chin. Phys. B 25 018102
[23] Zhang Y, Zhou X, Xu S, Zhang J, Zhang J and Hao Y 2016 Appl. Phys. Express 9 061003
[24] Zhang Y, Wang Z, Xu S, Chen D, Bao W, Zhang J, Zhang J and Hao Y 2017 Appl. Phys. Lett. 111 222107
[25] Zhang Y, Wang Z, Xu S, Bao W, Zhang T, Huang J, Zhang J and Hao Y 2018 Mater. Res. Bull. 105 368
[26] Yu S F, Chang S J, Lin R M, Lin Y H, Lu Y C, Chang S P and Chiou Y Z 2010 J. Cryst. Growth 312 1920
[27] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[28] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys. Condens. Matter. 14 3399
[29] He Y, Mi M, Wang C, Zheng X, Zhang M, Zhang H, Wu J, Yang L, Zhang P, Ma X and Hao Y 2017 IEEE Electron Device Lett. 38 1421
[1] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[2] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[3] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[4] Characteristics and threshold voltage model of GaN-based FinFET with recessed gate
Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(9): 097308.
[5] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[6] An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect
Fan-Yu Liu(刘凡宇), Heng-Zhu Liu(刘衡竹), Bi-Wei Liu(刘必慰), Yu-Feng Guo(郭宇峰). Chin. Phys. B, 2016, 25(4): 047305.
[7] Two-dimensional models of threshold voltage andsubthreshold current for symmetrical double-material double-gate strained Si MOSFETs
Yan-hui Xin(辛艳辉), Sheng Yuan(袁胜), Ming-tang Liu(刘明堂),Hong-xia Liu(刘红侠), He-cai Yuan(袁合才). Chin. Phys. B, 2016, 25(3): 038502.
[8] Analytical threshold voltage model for strained silicon GAA-TFET
Hai-Yan Kang(康海燕), Hui-Yong Hu(胡辉勇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 118501.
[9] A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET
Shweta Tripathi. Chin. Phys. B, 2016, 25(10): 108503.
[10] Threshold switching uniformity in In2Se3 nanowire-based phase change memory
Chen Jian, Du Gang, Liu Xiao-Yan. Chin. Phys. B, 2015, 24(5): 057702.
[11] Influences of fringing capacitance on threshold voltage and subthreshold swing of a GeOI metal-oxide-semiconductor field-effect transistor
Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Chin. Phys. B, 2015, 24(3): 037303.
[12] Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal
Guan Rong-Hua, Ye Wen-Jiang, Xing Hong-Yu. Chin. Phys. B, 2015, 24(10): 106102.
[13] Non-recessed-gate quasi-E-mode double heterojunction AlGaN/GaN high electron mobility transistor with high breakdown voltage
Mi Min-Han, Zhang Kai, Chen Xing, Zhao Sheng-Lei, Wang Chong, Zhang Jin-Cheng, Ma Xiao-Hua, Hao Yue. Chin. Phys. B, 2014, 23(7): 077304.
[14] Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer
Yu Xiao-Peng, Fan Guang-Han, Ding Bin-Bin, Xiong Jian-Yong, Xiao Yao, Zhang Tao, Zheng Shu-Wen. Chin. Phys. B, 2014, 23(2): 028502.
[15] A two-dimensional analytical model for channel potential and threshold voltage of short channel dual material gate lightly doped drain MOSFET
Shweta Tripathi. Chin. Phys. B, 2014, 23(11): 118505.
No Suggested Reading articles found!