Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017402    DOI: 10.1088/1674-1056/28/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum critical duality in two-dimensional Dirac semimetals

Jiang Zhou(周江)1, Ya-Jie Wu(吴亚杰)2, Su-Peng Kou(寇谡鹏)3
1 Department of Physics, Guizhou University, Guiyang 550025, China;
2 School of Science, Xi'an Technological University, Xi'an 710032, China;
3 Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

Quantum criticality is closely related to the existence of two phases with unrelated symmetry breaking. In this paper, we study Néel and Kekulé valence bond state (VBS) quantum criticality in Dirac semimetals with four-fermion interactions. Our results show that all possible dynamical masses yield the same critical coupling, which exhibits the phenomenon that all possible phases meet at a multicritical point (e.g., a tricritical point for the Néel, Kekulé-VBS and semimetallic phases). In terms of the well-established Wess-Zumino-Witten field theory, we investigate the typical criticality for the transition between Néel and Kekulé-VBS phases, and the compatible Néel-Kekulé-VBS mass matrices imply the existence of a non-Landau transition between the Néel and Kekulé-VBS phases. We show the existence of mutual duality in the defect-driven Néel-Kekulé-VBS transition near the non-Landau critical point and find that this mutual duality results from the presence of a mutual Chern-Simons term. We also study the mutual duality based on dual topological excitations.

Keywords:  quantum criticality      duality      semimetal-insulator transition      spin-charge separation  
Received:  20 June 2018      Revised:  27 October 2018      Published:  05 January 2019
PACS:  74.40.Kb (Quantum critical phenomena)  
  73.22.Gk (Broken symmetry phases)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11647111, 11504285, and 11674026) and the Research Start-up Funds of Guizhou University, China (Grant No. 201538).

Corresponding Authors:  Su-Peng Kou     E-mail:  spkou@bnu.edu.cn

Cite this article: 

Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏) Quantum critical duality in two-dimensional Dirac semimetals 2019 Chin. Phys. B 28 017402

[1] Sachdev S 2011 Quantum Phase Transitions (2nd Edn) (Cambridge: Cambridge University Press)
[2] Read N and Green D 2000 Phys. Rev. B 61 10267
[3] Li Z X, Jiang Y F, Jian S K and Hong Y 2017 Nat. Commun. 8 314
[4] Jian S K and Yao H 2017 Phys. Rev. B 96 195162
[5] Jian S K and Yao H 2017 Phys. Rev. B 96 155112
[6] You Y Z, He Y C, Xu C and Vishwanath A 2018 Phys. Rev. X 8 011026
[7] Classen L, Herbut I F and Scherer M M 2017 arXiv:1705.08973v2
[8] Scherer M M and Herbut I F 2016 Phys. Rev. B 94 205136
[9] Roy Bitan, Juricic V and Herbut I F 2013 Phys. Rev. B 87 041401(R)
[10] Senthil T, et al. 2004 Science 303 1490
[11] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[12] Hasan M Z and Kane C L 2011 Rev. Mod. Phys. 82 3054
[13] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[14] Zhang J, Zhao B, Zhou T and Yang Z 2016 Chin. Phys. B 25 117308
[15] Burkov A A, Hook M M and Balents L 2011 Phys. Rev. B 84 235126
[16] Xiang H J 2017 Chin. Phys. Lett. 34 057302
[17] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[18] Wu B, Song J, Zhou J and Jiang H 2016 Chin. Phys. B 25 117311
[19] Wu W, Rachel S, Liu W M and Hur K L 2012 Phys. Rev. B 85 205102
[20] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
[21] Zhou Z, Da W, Meng Z Y, Wang Y and Wu C 2016 Phys. Rev. B 93 245157
[22] Zhou Z, Da W, Wu C and Wang Y 2017 Phys. Rev. B 95 085128
[23] Otsuka Y, Yunoki S and Sorella S 2017 Phys. Rev. X 6 011029
[24] Li Z X, Jiang Y F and Yao H 2015 New J. Phys. 17 085003
[25] Capello M, Becca F, Yunoki S and Sorella S 2006 Phys. Rev. B 73 245116
[26] Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
[27] Griset C and Xu C 2012 Phys. Rev. B 85 045123
[28] Moon E G and Xu C 2012 Phys. Rev. B 86 214414
[29] Sato T, Hohenadler M and Fakher F A 2017 Phys. Rev. Lett. 119 197203
[30] Herbut I F 2006 Phys. Rev. Lett. 97 146401
[31] Herbut I F, Juricic V and Roy B 2009 Phys. Rev. B 79 085116
[32] Herbut I F, Juricic V and Vafek O 2009 Phys. Rev. B 80 075432
[33] Toldin F P, Martin H, Fakher F A and Herbut I F 2015 Phys. Rev. B 91 165108
[34] Fakher F A and Herbut I F 2013 Phys. Rev. X 3 031010
[35] Ghaemi P and Ryu S 2012 Phys. Rev. B 85 075111
[36] Ryu S, Mudry C, Hou C Y and Chamon C 2009 Phys. Rev. B 80 205319
[37] Hosur P, Ryu S and Vishwanath A 2010 Phys. Rev. B 81 045120
[38] Matthias V, Ying Z and Subir S 2000 Phys. Rev. B 62 10
[39] Subir S 2000 Science 288 475
[40] Xu C and Subir S 2009 Phys. Rev. B 79 064405
[41] Moon E G 2016 Sci. Rep. 6 31051
[42] Tanaka A 2011 J. Phys.: Conf. Ser. 320 012020
[43] Tanaka A and Hu X 2005 Phy. Rev. Lett. 95 036402
[44] Grover T and Senthil T 2008 Phys. Rev. Lett. 100 156804
[45] Abanov A G and Wiegmann P B 2000 Nucl. Phys. B 570 685
[46] Senthil T and Matthew P A F 2006 Phys. Rev. B 74 064405
[47] Xu C 2012 Int. J. Mod. Phys. B 26 1230007
[48] Balents L, Fisher M P A and Nayak C 1999 Phys. Rev. B 60 1654
[49] Kou S P, Qi X L and Weng Z Y 2005 Phys. Rev. B 71 235102
[50] Wang Q H 2003 Chin. Phys. Lett. 20 1582
[51] Wang Q H 2004 Phys. Rev. Lett. 92 057003
[52] Jian S K and Yao H 2018 arXiv:1805.12299v1
[53] Hou C Y, Chamon C and Mudry C 2007 Phys. Rev. Lett. 98 186809
[54] Ran Y, Vishwanath A and Lee D H 2008 Phys. Rev. Lett. 101 086801
[55] Qi X L and Zhang S C 2008 Phys. Rev. Lett. 101 086802
[56] Jackiw R and Rossi P 1981 Nucl. Phys. B 190 681
[57] Weinberg E J 1981 Phys. Rev. D 24 2669
[58] Qin Y Q, He Y Y, You Y Z, Lu Z Y, Sen A, Sandvik A W, Xu C and Meng Z Y 2017 Phys. Rev. X 7 031052
[59] Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051
[60] Janssen L and He Y C 2017 Phys. Rev. B 96 205113
[1] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[2] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[3] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[4] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[5] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai, Yang Jun, Yan Shu-Hua, Hu Qing-Qing, Luo Yu-Kun, Zhu Shi-Yao. Chin. Phys. B, 2015, 24(8): 080302.
[6] The duality of a single particle with an n-dimensional internal degree of freedom
Jia Ai-Ai, Huang Jie-Hui, Feng Wei, Zhang Tian-Cai, Zhu Shi-Yao. Chin. Phys. B, 2014, 23(3): 030307.
[7] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan. Chin. Phys. B, 2014, 23(11): 110309.
[8] Complex Maxwell's equations
A. I. Arbab. Chin. Phys. B, 2013, 22(3): 030301.
No Suggested Reading articles found!