Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017202    DOI: 10.1088/1674-1056/28/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities

Fateme Nadri1, Mohammad Mardaani1,2, Hassan Rabani1,2
1 Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115 Shahrekord, Iran;
2 Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord, Iran
Abstract  

We present a semi-analytic method to study the electronic conductance of a lengthy armchair honeycomb nanoribbon in the presence of vacancies, defects, or impurities located at a small part of it. For this purpose, we employ the Green's function technique within the nearest neighbor tight-binding approach. We first convert the Hamiltonian of an ideal semi-infinite nanoribbon to the Hamiltonian of some independent polyacetylene-like chains. Then, we derive an exact formula for the self-energy of the perturbed part due to the existence of ideal parts. The method gives a fully analytical formalism for some cases such as an infinite ideal nanoribbon and the one including linear symmetric defects. We calculate the transmission coefficient for some different configurations of a nanoribbon with special width including a vacancy, edge geometrical defects, and two electrical impurities.

Keywords:  nanoribbon      conductance      vacancy      impurity      Green's function  
Received:  09 September 2018      Revised:  06 November 2018      Published:  05 January 2019
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  78.67.Uh (Nanowires)  
Corresponding Authors:  Mohammad Mardaani     E-mail:  mohammad-m@sci.sku.ac.ir

Cite this article: 

Fateme Nadri, Mohammad Mardaani, Hassan Rabani Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities 2019 Chin. Phys. B 28 017202

[1] Torres L E F F, Roche S and Charlier J C 2014 Introduction to Graphene-Based Nanomaterials (Cambridge: Cambridge University Press)
[2] Katsnelson M I 2012 Graphene: Carbon in Two Dimensions (Cambridge: Cambridge University Press)
[3] Novoselov K, Geim A and Morozov S 2004 Science 306 666
[4] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[5] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[6] Blankenburg S, Cai J, Ruffieux P, Jaafar R, Passerone D, Feng X, Müllen K, Fasel R and Pignedoli C A 2012 ACS Nano 6 2020
[7] Djavid N, Khaliji K, Tabatabaei S M and Pourfath M 2014 IEEE T. Electron Dev. 61 23
[8] Chauhan S S, Srivastava P and Shrivastava A K 2014 Appl. Nanosci. 4 461
[9] Guerra T, Azevedo S and Machado M 2016 Eur. Phys. J. B 89 58
[10] Thrower P A and Mayer R M 1987 Phys. Status. Solidi. (a) 47 11
[11] Thrower P A 1964 Brit. J. Appl. Phys. 15 1153
[12] Koch M, Li Z, Nacci C, Kumagai T, Franco I and Grill L 2018 Phys. Rev. Lett. 121 047701
[13] Gorjizadeh N, Farajian A A and Kawazoe Y 2008 Nanotech. Let. 20 015201
[14] Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
[15] Zheng X H, Rungger I, Zeng Z and Sanvito S 2009 Phys. Rev. B 80 235426
[16] Smith C W, Katoch J and Ishigami M 2013 Appl. Phys. Lett. 102 133502
[17] Rabani H, Mardaani M and Mazloom Shahraki A 2013 Superlattice. Microst. 59 106
[18] Sharmaa B L 2018 Eur. Phys. J. B 91 84
[19] Stegmann T, Franco-Villafañe J A, Kuhl U, Mortessagne F and Seligman T H 2017 Phys. Rev. B 95 035413
[20] Mardaani M and Rabani H 2013 J. Magn. Magn. Mater. 331 28
[21] Mardaani M, Rabani H and Esmaeili A 2011 Solid State Commun. 151 928
[22] Xiong Y J and Kong X L 2010 Physica B 405 1690
[23] Lehmann T, Ryndyk D A and Cuniberti G 2013 Phys. Rev. B 88 125420
[24] Ihnatsenka S and Kirczenow G 2009 Phys. Rev. B 80 201407R
[25] Haskins J, Kýnacý A, Sevik C, Sevinc-li H, Cuniberti G and Çağin T 2011 ACS Nano 5 3779
[26] Simchi H, Esmaeilzadeh M and Saani M H 2012 Phys. Status Solidi B 249 1735
[1] Enhanced mobility of MoS2 field-effect transistors by combining defect passivation with dielectric-screening effect
Zhao Li(李钊), Jing-Ping Xu(徐静平), Lu Liu(刘璐), and Xin-Yuan Zhao(赵心愿). Chin. Phys. B, 2021, 30(1): 018102.
[2] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[3] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[4] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[5] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[6] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[7] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[8] Facile and fast growth of high mobility nanoribbons of ZrTe5
Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松). Chin. Phys. B, 2020, 29(6): 068102.
[9] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[10] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[11] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[12] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[13] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[14] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[15] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
No Suggested Reading articles found!