Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016501    DOI: 10.1088/1674-1056/28/1/016501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons

Caiyun Wang(王彩云)1, Shuang Lu(鲁爽)2, Xiaodong Yu(于晓东)2, Haipeng Li(李海鹏)2,3
1 Editorial Board of Journal of CUMT, China University of Mining and Technology, Xuzhou 221008, China;
2 School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
3 Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
Abstract  

We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons (ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon-structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.

Keywords:  graphene nanoribbons (GNRs)      thermal conductivity      phonon spectrum      surface functionalization      molecular dynamics simulations  
Received:  31 August 2018      Revised:  13 October 2018      Published:  05 January 2019
PACS:  65.80.Ck (Thermal properties of graphene)  
  63.20.kp (Phonon-defect interactions)  
  44.10.+i (Heat conduction)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504418), China Scholarship Council Scholarship Program (Grant No. 201706425053), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

Corresponding Authors:  Haipeng Li     E-mail:  haipli@cumt.edu.cn

Cite this article: 

Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏) Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 2019 Chin. Phys. B 28 016501

[1] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[2] Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P and Wu Y X 2017 Carbon 122 756
[3] Zhou H and Zhang G 2018 Chin. Phys. B 27 034401
[4] Yang X X, Kong X T and Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese)
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[6] Ye Z Q, Cao B Y and Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese)
[7] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911
[8] Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318
[9] Yang P, Wang X L, Li P, Wang H, Zhang L Q and Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese)
[10] Jiang J W, Lan J, Wang J S and Li B 2010 J. Appl. Phys. 107 054314
[11] Chen J, Zhang G and Li B 2013 Nanoscale 5 532
[12] Huang J and Han Q 2017 Mater. Res. Express 4 035041
[13] Li H P and Zhang R Q 2012 EPL 99 36001
[14] Dollfus P, Nguyen V H and Saint-Martin J 2015 J. Phys. Condens. Matter 27 133204
[15] Tran V T, Saint-Martin J, Dollfus P and Volz S 2017 Sci. Rep. 7 2313
[16] Hossain M S, Huynh D H, Nguyen P D, Jiang L, Nguyen T C, Al-Dirini F, Hossain F M and Skafidas E 2016 J. Appl. Phys. 119 125106
[17] Li H and Grossman J C 2017 Adv. Sci. 4 1600467
[18] Li H P and Zhang R Q 2018 Chin. Phys. B 27 036801
[19] Li H P, De Sarkar A and Zhang R Q 2011 EPL 96 56007
[20] Lu A J, Zhang R Q and Lee S T 2008 Nanotechnology 19 035708
[21] Li H P and Zhang R Q 2014 EPL 105 56003
[22] Liu Z, Wu X and Luo T 2017 2D Mater. 4 025002
[23] Zhang H, Fonseca A F and Cho K 2014 J. Phys. Chem. C 118 1436
[24] Sun Y, Chen L, Cui L, Zhang Y and Du X 2018 Comput. Mater. Sci. 148 176
[25] Chien S K, Yang Y T and Chen C K 2012 Carbon 50 421
[26] Wang M, Galpaya D, Lai Z B, Xu Y and Yan C 2014 Int. J. Smart Nano Mater. 5 123
[27] Cao Y, Feng J and Wu P 2010 Carbon 48 1683
[28] Patila M, Pavlidis I V, Kouloumpis A, Dimos K, Spyrou K, Katapodis P, Gournis D and Stamatis H 2016 Int. J. Biol. Macromol. 84 227
[29] Vanzo D, Bratko D and Luzar A 2012 J. Chem. Phys. 137 034707
[30] Jang J, Pham V H, Rajagopalan B, Hur S H and Chung J S 2014 Nanoscale Res. Lett. 9 265
[31] Kinaci K, Haskins J B and Çağın T 2012 J. Phys. Chem. 137 014106
[32] Müller-Plathe F A 1997 J. Chem. Phys. 106 6082
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys. Condens Mater. 14 783
[35] Han T W and He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)
[36] Pei Q X, Zhang Y W and Shenoy V B 2010 Carbon 48 898
[37] Zheng B Y, Dong H L and Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese)
[38] Nosé S 1984 J. Chem. Phys. 81 511
[39] Hunter K C and East A L L 2002 J. Phys. Chem. A 106 1346
[40] Philpott M R and Kawazoe Y 2009 Phys. Rev. B 79 233303
[41] Xu R F, Han K and Li H P 2018 Chin. Phys. B 27 026801
[42] Dickey J M and Paskin A 1969 Phys. Rev. 188 1407
[43] Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
[44] Zhang Y Y, Pei Q X, He X Q and Mai Y W 2015 Chem. Phys. Lett. 622 104
[45] Wei N, Xu L, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
[46] Aref A H, Erfan-Niya H and Entezami A A 2016 J. Mater. Sci. 51 6824
[47] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[48] Padgett C W and Brenner D W 2004 Nano Lett. 4 1051
[49] Liu X, Zhang G, Pei Q X and Zhang Y W 2016 Mater. Today Proc. 3 2759
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[3] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[4] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[5] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[6] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[7] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[8] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[9] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[10] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[11] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[12] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[13] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[14] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[15] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
No Suggested Reading articles found!