Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016401    DOI: 10.1088/1674-1056/28/1/016401

Equation of state for aluminum in warm dense matter regime

Kun Wang(王坤)1,2, Dong Zhang(张董)1, Zong-Qian Shi(史宗谦)3, Yuan-Jie Shi(石元杰)3,4, Tian-Hao Wang(王天浩)1, Yue Zhang(张阅)1
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China;
3 State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
4 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China

A semi-empirical equation of state model for aluminum in a warm dense matter regime is constructed. The equation of state, which is subdivided into a cold term, thermal contributions of ions and electrons, covers a broad range of phase diagram from solid state to plasma state. The cold term and thermal contribution of ions are from the Bushman-Lomonosov model, in which several undetermined parameters are fitted based on equation of state theories and specific experimental data. The Thomas-Fermi-Kirzhnits model is employed to estimate the thermal contribution of electrons. Some practical modifications are introduced to the Thomas-Fermi-Kirzhnits model to improve the prediction of the equation of state model. Theoretical calculation of thermodynamic parameters, including phase diagram, curves of isothermal compression at ambient temperature, melting, and Hugoniot, are analyzed and compared with relevant experimental data and other theoretical evaluations.

Keywords:  equation of state      phase diagram      warm dense matter  
Received:  27 July 2018      Revised:  22 October 2018      Accepted manuscript online: 
PACS:  64.10.+h (General theory of equations of state and phase equilibria)  
  31.15.bu (Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))  

Project supported by the National Natural Science Foundation of China (Grant No. 51807050), the National Basic Research Program of China (Grant No. 2015CB251002) and the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Hebei, China (Grant No. BJ2017038).

Corresponding Authors:  Zong-Qian Shi     E-mail:

Cite this article: 

Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅) Equation of state for aluminum in warm dense matter regime 2019 Chin. Phys. B 28 016401

[1] Renaudin P, Blancard C, Clérouin J, Faussurier G, Noiret P and Recoules V 2003 Phys. Rev. Lett. 91 075002
[2] Lorenzen W, Becker A and Redmer R 2014 Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering (Graziani F, Desjarlais M P, Redmer R and Trickey S B, Ed.) (Cham: Springer) Vol. 96, pp. 203-204
[3] Chen Q F, Gu Y J, Zheng J, Li J T, Li Z G, Long Q W, Fu Z J and Li C J 2017 Chin. Sci. Bull. 62 812 (in Chinese)
[4] Lomonosov I V and Gryaznov V K 2016 Contrib. Plasma Phys. 56 302
[5] Desilva A W and Vunni G B 2011 Phys. Rev. E 83 037402
[6] Knudson M D, Desjarlais M P, Becker A, Lemke R W, Cochrane K R, Savage M E, Bliss D E, Mattsson T R and Redmer R 2015 Science 348 1455
[7] Mostovych A N, Chan Y, Lehecha T, Phillips L, Schmitt A and Sethian J D 2000 Phys. Rev. Lett. 85 3870
[8] Zaghloul M R 2018 High Energy Density Phys. 26 8
[9] Kashiwa B A 2010 The MGGB equation-of-state for multifield applications: a numerical recipe for analytic expression of sesame EOS data (Los Alamos National Laboratory Report: LA-14421)
[10] Li Z G, Cheng Y, Chen Q F, Chen X R 2016 Phys. Plasmas 23 052701
[11] Bushman A V, Kanel G I, Ni A L and Fortov V E 1993 Intense Dynamic Loading Condens. Matter (Bosa Roca: Taylor & Francis) pp. 116-141
[12] Lomonosov I V 2007 Laser Part. Beams 25 567
[13] Faika S, Tauschwitz A, Iosilevskiy I, Maruhn J A 2012 High Energy Density Phys. 8 349
[14] Wang K, Shi Z Q, Shi Y J, Wu J, Jia S L and Qiu A C 2015 Acta Phys. Sin. 64 156401 (in Chinese)
[15] Shemyakin O P, Levashov P R and Khishchenko K V 2012 Contrib. Plasma Phys. 52 37
[16] Wang K, Shi Z Q, Shi Y J, Bai J, Wu J and Jia S L 2015 Phys. Plasmas 22 062709
[17] Dirac P A M 1930 Proc. Cambridge Philos. Soc. 26 376
[18] Kirzhnits D A 1957 Sov. Phys. JETP 5 64
[19] McCarthy S L 1965 The Kirzhnits Corrections to the Thomas-Fermi Equation of State (Lawrence Livermore Laboratory Report: UCRL-14364)
[20] Yu G R 1987 Journal of Xinyang Nornal University (Natural Science Edition) 1 1 (in Chinese)
[21] Dyachkov S and Levashov P 2014 Phys. Plasmas 21 052702
[22] Cochrane K, Desjarlais M, Haill T, Lawrence J, Knudson M and Dunham G 2006 Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code (Sandia National Laborary Report: SAND2006-1739)
[23] Gordeev G D, Gudarenko L F, Zhernokletov M V, Kudel'Kin V G and Mochalov M A 2008 Combustion Explosion & Shock Waves 44 177
[24] Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505
[25] Greene R G, Luo H and Ruoff A L 1994 Phys. Rev. Lett. 73 2075
[26] Dewaele A, Loubeyre P, Mezouar M 2004 Phys. Rev. B 70 094112
[27] Nellis W, Moriarty J, Mitchell A, Ross M, Dandrea R, Ashcroft N, Holmes N and Gathers G 1988 Phys. Rev. Lett. 60 1414
[28] Eliezer S, Ghatak A K, Hora H and Ghatak A 2002 Fundamentals Equations State (Singapore: World Scientific) p. 165
[29] Marsh S P 1980 LASL Shock Hugoniot Data (London: Cambridge University Press) p. 23
[30] Celliers P M, Collins G W, Hicks D G and Eggert J H 2005 J. Appl. Phys. 98 113529
[31] Trunin R F, Panov M V and Medvedev A B 1995 JETP Lett. 62 591
[32] Knudson M D, Lemke R W, Hayes D B, Hall C A, Deeney C and Asay J R 2003 J. Appl. Phys. 94 4420
[33] Mitchell A C and Nellis W J 1981 J. Appl. Phys. 52 3363
[34] Fu Z J, Quan W L, Zhang W, Li Z G, Zheng J, Gu Y J and Chen Q F 2017 Phys. Plasmas 24 013303
[35] Minakov D A, Levashov P R, Khishchenko K V and Fortov V E 2014 J. Appl. Phys. 115 223512
[36] Boehler R and Ross M 1997 Earth & Planet. Sci. Lett. 153 223
[37] Hänström A and Lazor P 2000 J. Alloys & Compd. 305 209
[38] Jayaraman A, Klement J W and Kennedy G C 1963 Phys. Rev. 130 2277
[39] Ohse R W and Tippelskirch H V 1977 High Temperatures-High Pressures 9 367
[40] Young D A 1977 Soft-sphere model for liquid metals (Lawrence Livermore Laboratory Report: UCRL-52352)
[41] Singh J K, Adhikari J and Sang K K 2006 Fluid Phase Equilibria 248 1
[1] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[4] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[5] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[6] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[7] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[8] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[9] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[10] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[11] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[12] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
[13] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[14] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[15] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
No Suggested Reading articles found!