Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014202    DOI: 10.1088/1674-1056/28/1/014202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of the Casimir force on the properties of a hybrid optomechanical system

Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(School of Information and Optoelectronic Science and Engineering), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  

We investigate the effects of the Casimir force on the output properties of a hybrid optomechanical system. In this system, a nanosphere is fixed on the movable-mirror side of the standard optomechanical system, and the nanosphere interacts with the movable-mirror via the Casimir force, which depends on the mirror-sphere separation. In the presence of the probe and control fields, we analyze the transmission coefficient and the group delay of the field-component with the frequency of the probe field. We also study the transmission intensity of the field-component with the frequency of a newly generated four-wave mixing (FWM) field. By manipulating the Casimir force, we find that a tunable slow light can be realized for the field-component with the frequency of the probe field, and the intensity spectrum of the FWM field can be enhanced and shifted effectively.

Keywords:  quantum optics      optomechanics      quantum information and processing  
Received:  20 August 2018      Revised:  07 October 2018      Published:  05 January 2019
PACS:  42.50.-p (Quantum optics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (Grant No. 2017LKXM090).

Corresponding Authors:  Ya-Fei Yu, Zhi-Ming Zhang     E-mail:  yuyafei@m.scnu.edu.cn;zhangzhiming@m.scnu.edu.cn

Cite this article: 

Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明) Effects of the Casimir force on the properties of a hybrid optomechanical system 2019 Chin. Phys. B 28 014202

[1] Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653
[2] Liu Y L, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B 27 024204
[3] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[4] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204
[5] Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y and Jing J 2018 Opt. Commun. 410 102
[6] Dong C, Wang H, Kuzyk M and Fiore V 2012 Science 338 1609
[7] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[8] Chang D E, Naeini A H S, Hafezi M and Painter O 2011 New J. Phys. 13 023003
[9] Agarwal G S and Huang S M 2012 Phys. Rev. A 85 021801
[10] Shi H Q, Xie Z Q, Xu X W and Liu N H 2018 Acta Phys. Sin. 67 044203 (in Chinese)
[11] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 74 2447
[12] Kien F L and Hakuta K 2009 Phys. Rev. A 79 013818
[13] Mirhosseini M, Viza G I, Magaña-Loaiza O S, Malik M, Howell J C and Boyd R W 2016 Phys. Rev. A 93 053836
[14] Jiang C, Liu H, Cui Y, Li X, Chen G and Chen B 2013 Opt. Express 21 12165
[15] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[16] Solanki S K, Lagg A, Woch J, Krupp N and Collados M 2003 Nature 425 692
[17] Chen B, Jiang C and Zhu K D 2011 Phys. Rev. A 83 055803
[18] Tarhan D, Huang S M and Müstecaplioğlu Ö E 2013 Phys. Rev. A 87 013824
[19] Chen H J, Chen C Z, Li Y, Fang X W and Tang X D 2017 Opt. Commun. 382 73
[20] Boyd R W and Gauthier D J 2002 Progress in Optics (Wolf E Ed.) (Amsterdam: Elsevier) pp. 497-530
[21] Huang S M and Agarwal G S 2010 Phys. Rev. A 81 033830
[22] Li J, Yu R, Ding C and Wu Y 2014 Opt. Express 22 15024
[23] Li Z, You X, Li Y, Liu Y C and Peng K 2018 Phys. Rev. A 97 033806
[24] Lamoreaux S K 2005 Rep. Prog. Phys. 68 201
[25] Lamoreaux S K 2007 Phys. Today 60 40
[26] Sushkov A O, Kim W J, Dalvit D A R and Lamoreaux S K 2011 Nat. Phys. 7 230
[27] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5
[28] Ruoso G, Bressi G, Carugno G and Onofrio R 2002 Phys. Rev. Lett. 88 041804
[29] Chan H B, Bao Y, Zou J, Cirelli R A, Klemens F, Mansfield W M and Pai C S 2008 Phys. Rev.Lett. 101 030401
[30] Krause D E, Decca R S, Lopez D and Fischbach E 2007 Phys. Rev. Lett. 98 050403
[31] Intravaia F, Koev S, Jung I W, Talin A A, Davids P S, Decca R S, Aksyuk V ADalvit D A and Lopez D 2013 Nat. Commun. 4 2515
[32] Klimchitskaya G L, Mohideen U and Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827
[33] Rodriguez-Lopez P and Grushin A G 2014 Phys. Rev. Lett. 112 056804
[34] Cysne T, Kort-Kamp W J M, Oliver D, Pinheiro F A, Rosa F S S and Farina C 2014 Phys. Rev. A 90 052511
[35] Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003
[36] Volokitin A I and Persson B N 2011 Phys. Rev. Lett. 106 094502
[37] Rodriguez A W, McCauley A P, Woolf D, Capasso F, Joannopoulos J D and Johnson S G 2010 Phys. Rev. Lett. 104 160402
[38] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Phys. Rev. Lett. 87 211801
[39] Shahmoon E, Mazets I and Kurizki G 2014 Proc. Natl. Acad. Sci. USA 111 10485
[40] Zou J, Marcet Z, Rodriguez A W, Reid M T H, McCauley A P, Kravchenko I I, Lu T, Bao Y, Johnson S G and Chan H B 2013 Nat. Commun. 4 1845
[41] Nie W J, Lan Y H, Li Y and Zhu S Y 2012 Phys. Rev. A 86 063809
[42] Liu X, Li Y and Jing H 2016 Sci. Rep. 6 27102
[43] Bimonte G, Emig T, Jaffe R L and Kardar M 2012 EPL 97 50001
[44] Gardiner C W and Zoller P 2000 Quantum Noise: a Handbook of Markovian and non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer-Verlag) vol. 56
[45] Boyd R W 2008 Nonlinear Optics (3rd edn.) (Amsterdam: Academic Press)
[46] Woodley J F and Mojahedi M 2004 Phys. Rev. E 70 046603
[47] Fano U 1961 Phys. Rev. 124 1866
[48] Cheng Y, Tan Z, Wang J, Zhu Y F and Zhan M S 2016 Chin. Phys. Lett. 33 014202
[49] Garcia-Sanchez D, Fong K Y, Bhaskaran H, Lamoreaux S and Tang H X 2012 Phys. Rev. Lett. 109 027202
[1] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[2] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[3] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[4] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[5] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[6] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[7] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[8] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[9] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[10] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[11] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[12] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[13] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[14] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
[15] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
No Suggested Reading articles found!