Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 013702    DOI: 10.1088/1674-1056/28/1/013702
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms

Pengwei Li(李鹏伟)1, Yuqing Li(李玉清)1,2, Guosheng Feng(冯国胜)1, Jizhou Wu(武寄洲)1,2, Jie Ma(马杰)1,2, Liantuan Xiao(肖连团)1,2, Suotang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

We study the influence of external magnetic field on the shift of the resonant frequency in the photoassociation of ultracold Cs atoms, which are captured in a magnetically levitated optical crossed dipole trap. With the increase of the photoassociation laser intensity, the linear variation of the frequency shift is measured by recording the photoassociation spectra of the long-range 0u+ state of Cs molecule below the 6S1/2+6P1/2 dissociation limit at different magnetic fields. The slope of the frequency shift to the intensity of the photoassociation laser exhibits a strong dependence on the external magnetic field. The experimental data is simulated with an analytic theory model, in which a single channel rectangular potential with the tunable well depth is introduced to acquire the influence of the magnetic field on the atomic behavior in the effective range where photoassociation occurs.

Keywords:  ultracold molecule      photoassociation      frequency shift  
Received:  27 September 2018      Revised:  22 November 2018      Published:  05 January 2019
PACS:  37.10.Pq (Trapping of molecules)  
  37.10.Mn (Slowing and cooling of molecules)  
  33.70.Jg (Line and band widths, shapes, and shifts)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the Chang Jiang Scholars and Innovative Research Team in the University of the Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, 61705123, and 11434007), the Fund for Shanxi 1331 Project Key Subjects Construction, China, and the Applied Basic Research Project of Shanxi Province, China (Grant No. 201701D221002).

Corresponding Authors:  Yuqing Li     E-mail:  lyqing.2006@163.com

Cite this article: 

Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂) Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms 2019 Chin. Phys. B 28 013702

[1] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[2] Krems R, Friedrich B and Stwalley W C 2009 CRC Press 753 279
[3] Krems R V 2005 Int. Rev. Phys. Chem. 24 99
[4] Zelevinsky T, Kotochigova S and Ye J 2008 Phys. Rev. Lett. 100 043201
[5] DeMille D, Sainis S, Saga J, Bergeman T, Kotochigova S and Tiesinga E 2008 Phys. Rev. Lett. 100 043202
[6] Beloy K, Borschevsky A, Flambaum V V and Schwerdtfeger P 2011 Phys. Rev. A 84 042117
[7] Sainis S, Saga J, Tiesinga E, Kotochigova S, Bergeman T and DeMille D 2012 Phys. Rev. A 86 022513
[8] Ma J, Chen P, Liu W L, Feng G S, Li Y Q, Wu J Z, Xiao L T and Jia S T 2013 Acta Phys. Sin. 62 223301 (in Chinese)
[9] Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
[10] DeMille D 2002 Phys. Rev. Lett. 88 067901
[11] Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F and Pillet P 1998 Phys. Rev. Lett. 80 4402
[12] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S and Ye J 2013 Nature 501 521
[13] Molony P K, Gregory P D, Ji Z, Lu B, Köpinger M P, Sueur C R L, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
[14] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[15] Zhang W, Xie T, Huang Y, Wang G R and Cong S L 2013 Chin. Phys. B 22 013301
[16] Wang Y, Yue D G, Zhou X C, Guo Y H and Meng Q T 2017 Chin. Phys. B 26 043202
[17] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
[18] Bohn J L and Julienne P S 1999 Phys. Rev. A 60 414
[19] Liu W, Wang X, Wu J, Su X, Wang S, Sovkov V B, Ma J, Xiao L and Jia S 2017 Phys. Rev. A 96 022504
[20] Portier M, Moal S, Kim J, Leduc M, Cohen-Tannoudji C and Delieu O 2006 J. Phys. B 39 S881
[21] Prodan I D, Pichler M, Junker M, Hulet R G and Bohn J L 2003 Phys. Rev. Lett. 91 080402
[22] McKenzie C, Denschlag J H, Häffner H, Browaeys A, Araujo L E E, Fatemi F K, Jones K M, Simsarian J E, Cho D, Somoni A, Tiesinga E, Julienne P S, Helmerson K, Lett P D, Rolston S L and Phillips W D 2002 Phys. Rev. Lett. 88 120403
[23] Simoni A, Julienne P S, Tiesinga E and Williams C J 2002 Phys. Rev. A 66 063406
[24] Wu J Z, Ji Z H, Zhang Y C, Wang L R, Zhao Y T, Ma J, Xiao L T and Jia S T 2011 Opt. Lett. 36 2038
[25] Zhang Y C, Ma J, Li Y Q, Wu J Z, Zhang L J, Chen G, Wang L R, Zhao Y T, Xiao L T and Jia S T 2012 Appl. Phys. Lett. 101 131114
[26] Kim J, Moal S, Portier M, Dugué J, Leduc M and Cohen-Tannoudji C 2005 Europhys. Lett. 72 548
[27] Fedichev P O, Kagan Y, Shlyapnikov G V and Walraven J T M 1996 Phys. Rev. Lett. 77 2913
[28] Junker M, Dries D, Welford C, Hitchcock J, Chen Y P and Hulet R G 2008 Phys. Rev. Lett. 101 060406
[29] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H C and Grimm R 2004 Appl. Phys. B 79 1013
[30] Li Y, Feng G, Xu R, Wang X, Wu J, Chen G, Dai X, Ma J, Xiao L and Jia S 2015 Phys. Rev. A 91 053604
[31] Pichler M, Chen H and Stwalley W C 2004 J. Chem. Phys. 121 1796
[32] Gerton J M, Frew B J and Hulet R G 2001 Phys. Rev. A 64 053410
[33] Lange A D, Pilch K, Prantner A, Ferlaino F, Engeser B, Nägerl H C, Grimm R and Chin C 2009 Phys. Rev. A 79 013622
[34] Feng G S, Li Y Q, Wang X F, Wu J Z, Sovkov V B, Ma J, Xiao L T and Jia S T 2017 Sci. Rep. 7 13677
[35] Gribakin G F and Flambaum V V 1993 Phys. Rev. A 48 546
[36] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[37] Chin C, Vuletić V, Kerman A J, Chu S, Tiesinga E, Leo P J and Williams C J 2004 Phys. Rev. A 70 032701
[38] Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
[1] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[2] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[3] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[4] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[5] Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(8): 083301.
[6] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[7] Enhancement of signal-to-noise ratio of ultracold polar NaCs molecular spectra by phase locking detection
Wenhao Wang(王文浩), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Xiaofeng Wang(王晓锋), Yanyan Liu(刘艳艳), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123701.
[8] Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123702.
[9] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[10] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[11] Two-color laser modulation of magnetic Feshbach resonances
Li Jian, Liu Yong, Huang Yin, Cong Shu-Lin. Chin. Phys. B, 2015, 24(8): 080308.
[12] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha, Wang Jian-Ping, Kang Zhe, Yu Chong-Xiu. Chin. Phys. B, 2015, 24(8): 084212.
[13] Fluctuations of optical phase of diffracted light for Raman-Nath diffraction in acousto-optic effect
Weng Cun-Cheng, Zhang Xiao-Man. Chin. Phys. B, 2015, 24(1): 014210.
[14] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang, Wang Yan-Hui. Chin. Phys. B, 2015, 24(1): 010602.
[15] Measurement of 129Xe frequency shift due to Cs-129Xe collisions
Fang Jian-Cheng, Wan Shuang-Ai, Chen Yao. Chin. Phys. B, 2014, 23(6): 063401.
No Suggested Reading articles found!