Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097506    DOI: 10.1088/1674-1056/27/9/097506
Special Issue: TOPICAL REVIEW — Spin manipulation in solids
TOPICAL REVIEW—Spin manipulation in solids Prev   Next  

Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain

Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力)
Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  

Magnetization manipulation by an electric field (E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal.

Keywords:  electric field      volatile and non-volatile      magnetization switching  
Received:  27 April 2018      Revised:  09 June 2018      Published:  05 September 2018
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  77.80.bn (Strain and interface effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51671098) and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT16R35).

Corresponding Authors:  Li Xi     E-mail:  xili@lzu.edu.cn

Cite this article: 

Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力) Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain 2018 Chin. Phys. B 27 097506

[1] Moodera J S, Kinder L R, Wong T M and Meservey R 1995 Phys. Rev. Lett. 74 3273
[2] Wei H X, Qin Q H, Ma M, Sharif R and Han X F 2007 J. Appl. Phys. 101 09B501
[3] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
[4] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
[5] Chappert C, Fert A and Dau F N V 2007 Nat. Mater. 6 813
[6] Zhu J G 2008 Proc. IEEE 96 1786
[7] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[8] Berger L 1996 Phys. Rev. B 54 9353
[9] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[10] Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
[11] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[12] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[13] https://www.everspin.com/files/everspin-releases-highest-density-mram-products-final-041216pdf
[14] Kim Y, Fong X, Kwon K W, Chen M C and Roy K 2015 IEEE Trans. Electron. Devices 62 561
[15] Van d B A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J and Koopmans B 2016 Nat. Commun. 7 10854
[16] Lambert C H, Mangin S, Varaprasad B S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M and Fullerton E E 2014 Science 345 1337
[17] Cao J and Wu J 2011 Sci. Eng. R 71 35
[18] Kharel P, Sudakar C, Dixit A, Harris A B, Naik R and Lawes G 2009 Europhys. Lett. 86 17007
[19] Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R and Dynes R C 2010 Nat. Mater. 9 756
[20] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[21] Bauer U, Yao L, Tan A J, Agrawal P, Emori S, Tuller H L, van Dijken S and Beach G S D 2015 Nat. Mater. 14 174
[22] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[23] Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Weisheng Z, Trypiniotis, T, Cowburn R P, Chappert C, Ravelosona D and Lecoeur P 2013 Nat. Commun. 4 1378
[24] Rushforth A W, Ranieri E D, Zemen J, Wunderlich J, Edmonds K W, King C S, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Vyborny K, Kucera J and Jungwirth T 2008 Phys. Rev. B 78 085314
[25] Li Y, Luo W, Zhu L, Zhao J and Wang K Y 2015 J. Magn. Magn. Mater. 375 148
[26] Khomskii D I 2009 Physics 2 20
[27] Ma J, Hu J, Li Z and Nan C W 2011 Adv. Mater. 23 1061
[28] Lu C J, Li P, Wen Y M, Yang A C, Yang C, Wang D C, He W and Zhang J T 2014 Chin. Phys. B 23 117503
[29] Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
[30] Sen P, Dey A, Mukhopadhyay A K, Bandyopadhyay S K and Himanshu A K 2012 Ceram. Int. 38 1347
[31] Song C, Cui B, Li F, Zhou X and Pan F 2017 Prog. Mater. Sci. 87 33
[32] Sahoo S, Polisetty S, Duan C G, Jaswal S S, Tsymbal E Y and Binek C 2007 Phys. Rev. B 76 092108
[33] Bar-Chaim N, Brunstein M, Grünberg J and Seidman A 1974 J. Appl. Phys. 45 2398
[34] Li Z, Xu Z, Yao X and Cheng Z Y 2008 J. Appl. Phys. 104 024112
[35] Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer K S and Sun N X 2010 J. Appl. Phys. 107 073916
[36] Vaz C A F 2012 J. Phys.:Condens. Matter 24 333201
[37] Song C, Cui B, Peng J J, Mao H J and Pan F 2016 Chin. Phys. B 25 067502
[38] He H, Zhao J, Luo Z, Yang Y, Xu H, Hong B, Wang L, Wang R and Gao C 2016 Chin. Phys. Lett. 33 67502
[39] Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V and Pernod P 2011 Appl. Phys. Lett. 99 192507
[40] Liu M, Li S, Zhou Z, Beguhn S, Lou J, Xu F, Lu T J and Sun N X 2012 J. Appl. Phys. 112 063917
[41] Yang L, Zhao Y, Zhang S, Li P, Gao Y, Yang Y, Huang H, Miao P, Liu Y, Chen A, Nan C W and Gao C 2015 Sci. Rep. 4 4591
[42] Yang J J, Zhao Y G, Tian H F, Luo L B Zhang H Y, He Y J and Luo H S 2009 Appl. Phys. Lett. 94 212504
[43] Thiele C, Ouml K, rr, Bilani O, Ouml J and Schultz D 2007 Phys. Rev. B 75 054408
[44] Zhang S, Zhao Y, Xia X, Wu Y, Rizwan S, Yang L, Li P, Wang J, Zhu M, Zhang H, Jin X and Han X 2015 Sci. Rep. 4 3727
[45] Xi L, Guo X B, Wang Z, Li Y, Yao Y L, Zuo Y L and Xue D S 2013 Appl. Phys. Express 6 015804
[46] Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V and Pernod P 2011 Appl. Phys. Lett. 99 192507
[47] Cui B S, Guo X B, Wu K, Li D, Zuo Y L and Xi L 2016 J. Phys. D:Appl. Phys. 49 085002
[48] Chen A T and Zhao Y G 2016 APL Mater. 4 032303
[49] Liu M, Nan T, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q and Sun N X 2016 NPG Asia Mater. 8 e316
[50] Wu T, Bur A, Zhao P, Mohanchandra K P, Wong K, Wang K L, Lynch C S and Carman G P 2011 Appl. Phys. Lett. 98 012504
[51] Wu T, Zhao P, Bao M, Bur A, Hockel J L, Wong K, Mohanchandra K P, Lynch C S and Carman G P 2011 J. Appl. Phys. 109 124101
[52] Han X, Xi L, Li Y, Guo X, Li D, Wang Z, Zuo Y and Xue D 2014 Appl. Phys. Lett. 105 122402
[53] Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T, Sun N X and Brown G J 2013 Adv. Mater. 25 4886
[54] Zhang S, Zhao Y G, Li P S, et al. 2012 Phys. Rev. Lett. 108 137203
[55] Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater. 19 1826
[56] Chen Y J, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C and Harris V G 2009 Appl. Phys. Lett. 94 082504
[57] Guo X B, Wu K, Cui B S, Li D, Yun J J, Zuo Y L, Zuo H P, Wang T and Xi L 2016 J. Phys. D:Appl. Phys. 49 055005
[58] Guo X, Zuo Y, Li D, Cui B, Wu K, Yun J, Wang T and Xi L 2016 Appl. Phys. Lett. 108 042403
[59] Parkes D E, Cavill S A, Hindmarch A T and Wadley P 2012 Appl. Phys. Lett. 101 072402
[60] Guo X, Han X, Zuo Y, Zhang J, Li D, Cui B, Wu K, Yun J, Wang T, Peng Y and Xi L 2016 Appl. Phys. Lett. 108 152401
[61] Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z and Wang K Y 2016 Sci. Rep. 6 28458
[62] Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C and Wang K Y 2017 Acta Phys. Sin. 66 027501 (in Chinese)
[63] Guo X, Cui B, Guan C, Li D, Wu K, Yun J, Wang T, Peng Y, Zuo Y and Xi L 2017 J. Phys. D:Appl. Phys. 50 335001
[64] Yang S W, Peng R C, Jiang T, Liu Y K, Feng L, Wang J J, Chen L Q, Li X G and Nan C W 2014 Adv. Mater. 26 7091
[65] Liu M, Lou J, Li S and Sun N X 2011 Adv. Funct. Mater. 21 2593
[66] Chen A, Zhao Y, Li P, Zhang X, Peng R, Huang H, Zou L, Zheng X, Zhang S, Miao P, Lu Y, Cai J and Nan C W 2016 Adv. Mater. 28 363
[67] Wang J J, Hu J M, Ma J, Zhang J X, Chen L Q and Nan C W 2015 Sci. Rep. 4 7507
[68] Shaw J M, Nembach H T and Silva T J 2013 Phys. Rev. B 87 054416
[69] Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q and Nan C W 2015 Nano Lett. 15 616
[70] Oepen H P, Speckmann M, Millev Y and Kirschner J 1997 Phys. Rev. B 55 2752
[71] Farle M 1998 Rep. Prog. Phys. 61 755
[72] Millev Y and Kirschner J 1996 Phys. Rev. B 54 4137
[73] Sun Y, Ba Y, Chen A, et al. 2017 ACS Appl. Mater. Interfaces 9 10855
[74] Peng B, Zhou Z, Nan T, Dong G, Feng M, Yang Q, Wang X, Zhao S, Xian D, Jiang Z D, Ren W, Ye Z G, Sun N X and Liu M 2017 ACS Nano 11 4337
[75] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[76] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[77] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P and Wang K L 2014 Nat. Nanotechnol. 9 548
[78] Pai C F, Mann M, Tan A J and Beach G S D 2016 Phys. Rev. B 93 144409
[79] Lau Y C, Betto D, Rode K, Coey J M and Stamenov P 2016 Nat. Nanotechnol. 11 758
[80] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
[1] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[2] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[3] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
[4] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[5] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[6] Ionic liquid gating control of planar Hall effect in Ni80Fe20/HfO2 heterostructures
Yang-Ping Wang(汪样平), Fu-Fu Liu(刘福福), Cai Zhou(周偲), Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(7): 077507.
[7] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[10] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[11] Simulation of GaN micro-structured neutron detectors for improving electrical properties
Xin-Lei Geng(耿昕蕾), Xiao-Chuan Xia(夏晓川), Huo-Lin Huang(黄火林), Zhong-Hao Sun(孙仲豪), He-Qiu Zhang(张贺秋), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(2): 027201.
[12] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[13] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[14] Electromagnetic scattering of charged particles in a strong wind-blown sand electric field
Xingcai Li(李兴财), Xuan Gao(高璇), Juan Wang(王娟). Chin. Phys. B, 2019, 28(3): 034208.
[15] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
No Suggested Reading articles found!