Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097308    DOI: 10.1088/1674-1056/27/9/097308
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characteristics and threshold voltage model of GaN-based FinFET with recessed gate

Chong Wang(王冲)1, Xin Wang(王鑫)1, Xue-Feng Zheng(郑雪峰)1, Yun Wang(王允)2, Yun-Long He(何云龙)1, Ye Tian(田野)1, Qing He(何晴)1, Ji Wu(吴忌)1, Wei Mao(毛维)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 CYG Wayon Micro-Electronics Co., Ltd, Xi'an 710065, China
Abstract  

In this work, AlGaN/GaN FinFETs with different fin widths have been successfully fabricated, and the recessed-gate FinFETs are fabricated for comparison. The recessed-gate FinFETs exhibit higher transconductance value and positive shift of threshold voltage. Moreover, with the fin width of the recessed-gate FinFETs increasing, the variations of both threshold voltage and the transconductance increase. Next, transfer characteristics of the recessed-gate FinFETs with different fin widths and recessed-gate depths are simulated by Silvaco software. The relationship between the threshold voltage and the AlGaN layer thickness has been investigated. The simulation results indicate that the slope of threshold voltage variation reduces with the fin width decreasing. Finally, a simplified threshold voltage model for recessed-gate FinFET is established, which agrees with both the experimental results and simulation results.

Keywords:  AlGaN/GaN      FinFET      recessed gate      threshold voltage  
Received:  27 March 2018      Revised:  05 June 2018      Published:  05 September 2018
PACS:  73.61.Ey (III-V semiconductors)  
  52.77.Bn (Etching and cleaning)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400 300) and the National Natural Science Foundation of China (Grant Nos. 61574110, 61574112, and 61474091).

Corresponding Authors:  Chong Wang     E-mail:  chongw@xidian.edu.cn

Cite this article: 

Chong Wang(王冲), Xin Wang(王鑫), Xue-Feng Zheng(郑雪峰), Yun Wang(王允), Yun-Long He(何云龙), Ye Tian(田野), Qing He(何晴), Ji Wu(吴忌), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Characteristics and threshold voltage model of GaN-based FinFET with recessed gate 2018 Chin. Phys. B 27 097308

[1] Chow T P and Tyagi R 1994 IEEE T. Electron. Dev. 41 1481
[2] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[3] Liu T T, Zhang K, Zhu G R, Zhou J J, Kong Y C, Yu X X, Yu X X and Chen T S 2018 Chin. Phys. B 27 047307
[4] Jo Y W, Son D H, Won C H, Sindhuri V, Kim J H, Seo J H and Kang I M 2015 Int. Conf. Power Electron. Drive Syst. June 9-12, Sydney, Australia, p. 684
[5] Liu S H, Cai Y, Gu G D, Wang J Y, Zeng C H, Shi W H, Feng Z H, Qin H, Cheng Z Q, Chen K J and Zhang B S 2012 IEEE Electron. Dev. Lett. 33 354
[6] Lanford W B, Tanaka T, Otoki Y and Adesida I 2005 Electron. Lett. 41 449
[7] Yoo G M, Seo J H, Yoon Y J, Kim Y J, Kim S Y, Kang H S, Eun H R, Kwon R H, Jang Y I and Kang I M 2014 IEEE Int. Symp. Consumer Electrons, June 22-25, JeJu Island, South Korea, p. 1
[8] Yadav C, Kushwaha P, Khandelwal S, Duarte J P, Chauhan Y S and Hu C 2014 IEEE Electron. Dev. Lett. 35 612
[9] He Y L, Zhai S P, Mi M H, Zhou X W, Zheng X F, Zhang M, Zhang P, Yang L, Wang C, Ma X H and Hao Y 2017 Phys. Status Solidi (a) 214 1600504
[10] Lee D S, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson J W, Beam E, Ketterson A, Schuette M L, Saunier P and Palacios T 2013 IEEE Electron. Dev. Lett. 34 969
[11] Zhang K, Kong Y C, Zhu G R, Zhou J J, Yu X X, Kong C, Li Z H and Chen T S 2017 IEEE Electron. Dev. Lett. 38 615
[12] Binari S C, Ikossi K, Roussos J A and Kruppa W 2001 IEEE T. Electron. Dev. 48 465
[13] Stengel F, Mohammad S N and Morkoc H 1996 J. Appl. Phys. 80 3031
[14] Saito W, Takada Y, Kuraguchi M, Tsuda K and Omura I 2006 IEEE T. Electron. Dev. 53 356
[1] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[2] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[3] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[4] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[5] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[6] PBTI stress-induced 1/ f noise in n-channel FinFET
Dan-Yang Chen(陈丹旸), Jin-Shun Bi(毕津顺), Kai Xi(习凯), and Gang Wang(王刚). Chin. Phys. B, 2020, 29(12): 128501.
[7] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[8] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[9] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[10] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[11] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[12] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[13] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[14] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[15] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
No Suggested Reading articles found!