Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097102    DOI: 10.1088/1674-1056/27/9/097102

Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study

Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉)
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Atomistic characterization of chemical element distribution is crucial to understanding the role of alloying elements for strengthening mechanism of superalloy. In the present work, the site preferences of two alloying elements X-Y in γ-Ni of Ni-based superalloy are systematically studied using first-principles calculations with and without spin-polarization. The doping elements X and Y are chosen from the 27 kinds of 3d, 4d, 5d group transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au) and Al. We find that the spin-polarized calculations for Re-Re, Re-Ru, Re-Cr, Ru-Cr show a strong chemical binding affinity between the solute elements and are more consistent with the experimental results. The binding energies of pairs between the 28 elements have an obvious periodicity and are closely related the electronic configuration of the elements. When the d-electrons of the element are close to the half full-shell state, two alloying elements possess attractive binding energies, reflecting the effect of the Hund's rule. The combinations of early transition metals (Sc, Ti, V, Y, Zr, Nb, Hf, Ta) have a repulsive interaction in γ-Ni. These results offer insights into the role of alloying elements for strengthening mechanism of superalloy.

Keywords:  superalloy      transition metal      binding energy      cluster      first-principles calculations  
Received:  19 June 2018      Revised:  28 August 2018      Published:  05 September 2018
PACS:  71.20.Be (Transition metals and alloys) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  

Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0701501, 2017YFB0701502, and 2017YFB0701503).

Corresponding Authors:  Chong-Yu Wang     E-mail:

Cite this article: 

Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉) Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study 2018 Chin. Phys. B 27 097102

[1] Reed R C 2006 The Superalloys:Fundamentals and Applications (Cambridge:Cambridge University Press)
[2] Pollock T M and Tin S 2006 J. Propulsion Power 22 361
[3] Blavette D, Caron P and Khan T 1986 Scr. Metall. 20 1395
[4] Blavette D, Caron P and Khan T 1988 Sixth Int. Symp. Superalloys-Superalloys 1988 305
[5] Blavette D, Cadel E, Pareige C, Deconihout B and Caron P 2007 Microscopy Microanalysis 13 464
[6] Wanderka N and Glatzel U 1995 Mater. Sci. & Eng. A (Structural Mater.:Properties Microstruct. Process.) A203 69
[7] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D and Rösler J 2002 Scr. Mater. 46 235
[8] Mottura A, Miller M K and Reed R C 2008 The 11th International Symposium on Superalloys-Superalloys 2008 Champion, Pennsylvania 2008 891
[9] Mottura A, Warnken M, Miller M K, Finnis M W and Reed R C 2010 Acta Mater. 58 931
[10] Mottura A, Wu R T, Finnis M W and Reed R C 2008 Acta Mater. 56 2669
[11] Mottura A, Finnis M W and Reed R C 2012 Acta Mater. 60 2866
[12] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[13] Huang M and Zhu J 2016 Rare Met. 35 127
[14] Smith J 1987 Effects of Cr and Re additions upon coarsening and deformation behavior of single-crystal Ni-base model superalloys (Ph. D. Dissertation) (Illinois:Illinois University Urbana)
[15] Chen J Y, Feng Q, Cao L M and Sun Z Q 2011 Mater. Sci. Eng. A 528 3791
[16] Ge B H, Luo Y S, Li J R and Zhu J 2010 Scr. Mater. 63 969
[17] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L and Zhu J 2014 Acta Mater. 76 294
[18] Yu X X, Wang C Y, Zhang X N, Yan P and Zhang Z 2014 J. Alloys Compd. 582 299
[19] Huang Y Y, Mao Z G, Noebe R D and Seidman D N 2016 Acta Mater. 121 288
[20] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[21] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[28] Luo Y S, Zhang L H, Wang Y M, Ge B H, Guo W, Zhan J, Zhang J X and Zhu J 2016 Philos. Mag. Lett. 96 432
[29] Maisel S B, Schindzielorz N, Mottura A, Reed R C and Müller S 2014 Phys. Rev. B 90 094110
[1] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[2] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[5] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[8] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[9] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[10] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[13] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[14] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[15] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
No Suggested Reading articles found!