Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 096101    DOI: 10.1088/1674-1056/27/9/096101
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2

Jinxiu Wen(温锦秀)1,4, Hao Wang(汪浩)1,3, Huanjun Chen(陈焕君)1,2, Shaozhi Deng(邓少芝)1,2, Ningsheng Xu(许宁生)1,2
1 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China;
2 School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China;
3 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
4 School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
Abstract  

All-solid-state strong coupling systems with large vacuum Rabi splitting energy have great potential applications in future quantum information technologies, such as quantum manipulations, quantum information storage and processing, and ultrafast optical switches. Monolayer transition metal dichalcogenides (TMDs) have recently been explored as excellent candidates for the observation of solid-state strong coupling phenomena. In this work, from both experimental and theoretical aspects, we explored the strong coupling effect by integrating an individual plasmonic gold nanorod into the monolayer tungsten diselenide (WSe2). Evident anti-crossing behavior was observed from the coupled energy diagram at room temperature; a Rabi splitting energy of 98 meV was extracted.

Keywords:  Au nanorod-WSe2 heterostructures      strong coupling      all-solid-state system      room temperature  
Received:  16 April 2018      Revised:  23 May 2018      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  61.46.Hk (Nanocrystals)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51290271 and 11474364), the National Basic Research Program of China (Grant Nos. 2013CB933601 and 2013YQ12034506), the Natural Science Funds for Distinguished Young Scholars of Guangdong Province, China (Grant No. 2014A030306017), the Pearl River S & T Nova Program of Guangzhou, China (Grant No. 201610010084), and the Guangdong Special Support Program, China.

Corresponding Authors:  Huanjun Chen, Shaozhi Deng     E-mail:  chenhj8@mail.sysu.edu.cn;stsdsz@mail.sysu.edu.cn

Cite this article: 

Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生) Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2 2018 Chin. Phys. B 27 096101

[1] Koenderink A F, Alú A and Polman A 2015 Science 348 516
[2] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
[3] Matsukevich D N and Kuzmich A 2004 Science 306 663
[4] Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletić V 2013 Science 341 768
[5] Sanvitto D and Kéna-Cohen S 2016 Nat. Mater. 15 1061
[6] Hood C J, Lynn T W, Doherty A C, Parkins A S and Kimble H J 2000 Science 287 1447
[7] Reithmaier J R, Sȩk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[8] Savona V, Andreani L C, Schwendimann P and Quattropani A 1995 Solid State Commun. 93 733
[9] Fofang N T, Park T H, Neumann O, Mirin N A, Nordlander P and Halas N J 2008 Nano Lett. 8 3481
[10] Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M and Shegai T 2015 Phys. Rev. Lett. 114 157401
[11] Santhosh K, Bitton O, Chuntonov L and Haran G 2016 Nat. Commun. 7 11823
[12] Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J and Wang X H 2017 Phys. Rev. Lett. 118 237401
[13] Zhang H 2015 ACS Nano 9 9451
[14] Zhou K G and Zhang H L 2015 Small 11 3206
[15] Mak K F and Shan J 2016 Nat. Photon. 10 216
[16] Liu M, Zheng X U, Qi Y L, Liu H, Luo A Y, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Express 22 22841
[17] Luo Z Q, Wu D D, Xu B, Xu H Y, Cai Z P, Peng J, Weng J, Xu S, Zhu C H, Wang F Q, Sun Z P and Zhang H 2016 Nanoscale 8 1066
[18] Jiang Y Q, Miao L L, Jiang G B, Chen Y, Qi X, Jiang X F, Zhang H and Wen S C 2015 Sci. Rep. 5 16372
[19] Ye Z L, Cao T, Brien K O, Zhu H Y, Yin X B, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[20] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mats. 1 16055
[21] Dufferwiel S, Schwarz S, Withers F, Trichet A A P, Li F, Sich M, Del Pozo-Zamudio O, Clark C, Nalitov A, Solnyshkov D D, Malpuech G, Novoselov K S, Smith J M, Skolnick M S, Krizhanovskii D N and Tartakovskii A I 2015 Nat. Commun. 6 8579
[22] Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kéna-Cohen S and Menon V M 2015 Nat. Photon. 9 30
[23] Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V, Höfling S and Schneider C 2016 Nat. Commun. 7 13328
[24] Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T and Agarwal R 2016 Nano Lett. 16 1262
[25] Wang S J, Li S L, Chervy T, Shalabney A, Azzini S, Orgiu E, Hutchison J A, Genet C, Samorí P and Ebbesen T W 2016 Nano Lett. 16 4368
[26] Wen J X, Wang H, Wang W L, Deng Z X, Zhuang C, Zhang Y, Liu F, She J C, Chen J, Chen H J, Deng S Z and Xu N S 2017 Nano Lett. 17 4689
[27] Zheng D, Zhang S P, Deng Q, Kang M, Nordlander P and Xu H X 2017 Nano Lett. 17 3809
[28] Gole A and Murphy C J 2004 Chem. Mater. 16 3633
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[30] Li Y, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J and Heinz T F 2014 Phys. Rev. B 90 205422
[31] Huang X H, Neretina S and El-Sayed M A 2009 Adv. Mater. 21 4880
[32] Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H and Eda G 2013 Nanoscale 5 9677
[33] Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F and Lin H Q 2011 ACS Nano 5 6754
[34] Chen H J, Sun Z H, Ni W H, Woo K C, Lin H Q, Sun L D, Yan C H and Wang J F 2009 Small 5 2111
[35] Ming T, Zhao L, Xiao M D and Wang J F 2010 Small 6 2514
[36] Wang H, Ke Y L, Xu N S, Zhan R Z, Zheng Z B, Wen J X, Yan J H, Liu P, Chen J, She J C, Zhang Y, Liu F, Chen H J and Deng S Z 2016 Nano Lett. 16 6886
[1] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[2] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[3] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[4] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[5] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[6] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[7] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[8] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[9] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[10] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[11] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[12] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[13] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[14] Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator
Kun Dong(董锟). Chin. Phys. B, 2016, 25(12): 124202.
[15] Room temperature ferromagnetism in un-doped amorphous HfO2 nano-helix arrays
Xie Qian (谢谦), Wang Wei-Peng (王炜鹏), Xie Zheng (谢拯), Zhan Peng (战鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军). Chin. Phys. B, 2015, 24(5): 057503.
No Suggested Reading articles found!