Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094401    DOI: 10.1088/1674-1056/27/9/094401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials

Qi-Mei Zhao(赵启梅)1, Tong-Biao Wang(王同标)1, De-Jian Zhang(张德建)1, Wen-Xing Liu(刘文兴)1, Tian-Bao Yu(于天宝)1, Qing-Hua Liao(廖清华)1, Nian-Hua Liu(刘念华)2
1 Department of Physics, Nanchang University, Nanchang 330031, China;
2 Institute for Advanced Study, Nanchang University, Nanchang 330031, China
Abstract  

Hyperbolic metamaterials alternately stacked by graphene and silicon (Si) are proposed and theoretically studied to investigate the contribution of terahertz (THz) waves to near-field radiative transfer. The results show that the heat transfer coefficient can be enhanced several times in a certain THz frequency range compared with that between graphene-covered Si bulks because of the presence of a continuum of hyperbolic modes. Moreover, the radiative heat transfer can also be enhanced remarkably for the proposed structure even in the whole THz range. The hyperbolic dispersion of the graphene-based hyperbolic metamaterial can be tuned by varying the chemical potential or the thickness of Si, with the tunability of optical conductivity and the chemical potential of graphene fixed. We also demonstrate that the radiative heat transfer can be actively controlled in the THz frequency range.

Keywords:  radiative heat transfer      graphene      hyperbolic metamaterials  
Received:  16 February 2018      Revised:  15 May 2018      Accepted manuscript online: 
PACS:  44.40.+a (Thermal radiation)  
  78.67.Wj (Optical properties of graphene)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704175, 11664024, and 61367006).

Corresponding Authors:  Tong-Biao Wang     E-mail:  tbwang@ncu.edu.cn

Cite this article: 

Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华) Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials 2018 Chin. Phys. B 27 094401

[1] Wilde Y D, Formanek F, Carminati R, Gralak B, Lemoine P A, Joulain K, Mulet J P, Chen Y and Greffet J J 2006 Nature 444 740
[2] Kittel A, Wischnath U, Welker J, Huth O, Rüting F and Biehs S A 2008 Appl. Phys. Lett. 93 193109
[3] Huth F, Schnell M, Wittborn J, Ocelic N and Hillenbr R 2011 Nat. Mater. 10 352
[4] Worbes L, Hellmann and Kittel A 2013 Phys. Rev. Lett. 110 134302
[5] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[6] Laroche M, Carminati R and Greffet J J 2006 J. Appl. Phys. 100 063704
[7] Narayanaswamy A and Chen G 2003 Appl. Phys. Lett. 82 3544
[8] Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383
[9] Biehs S A, Tschikin M, Messina R and Ben-Abdallah P 2013 Appl. Phys. Lett. 102 131106
[10] Biehs S A, Tschikin M, Messina R and Ben-Abdallah P 2012 Appl. Phys. Lett. 109 104301
[11] Shen S, Narayanaswamy A and Chen G 2009 Nano Lett. 9 2909
[12] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
[13] Demtröder W 2008 Laser Spectrosc.:Vol 1:Basic Principles 4th edition (Berlin:Springer)
[14] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[15] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[16] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat Mater. 7 442
[17] Tonouchi M 2007 Nat. Photon. 1 97
[18] Kuznetsov S A, Paulish A G, Gelf, A V, Lazorskiy P A and Fedorinin V N 2012 Prog. Electromag. Res. 122 93
[19] Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635
[20] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[21] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[22] He X, Fujimura N, Lloyd J M, Erickson K J, Talin A A, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge R H, Léonard F and Kono J 2014 Nano Lett. 14 3953
[23] Guo Y, Cortes C L, Molesky S and Jacob Z 2012 Appl. Phys. Lett. 101 131106
[24] Kong B D, Sokolov V N, Kim K W and Trew R J 2010 IEEE Sens. J. 10 443
[25] Andryieuski A, Lavrinenko A V and Chigrin D N 2012 Phys. Rev. B 86 121108
[26] Falkovsky L A 2008 J. Phys:Conf. Ser. 129 012004
[27] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[28] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[29] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[30] Hu L and Chui S T 2002 Phys. Rev. B 66 085108
[31] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405
[32] Yeh P 1988 Optical Waves in Layered Media (New York:Wiley)
[33] Sayem A A, Rahman M M, Mahdy M R C, Jahangir I and Rahman M S 2016 Sci. Rep. 6 25442
[34] Brundermann E, Hubers H W and Kimmitt M F G 2012 Terahertz Techniques (Berlin Heidelberg:Springer Series in Optical Sciences)
[35] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.:Condens. Matter 19 026222
[36] Zhang Z M 2007 Nano/Microscale Heat Transfer (New York:McGraw-Hill)
[37] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 J. Phys:Condens. Matter 25 215301
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[4] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[14] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[15] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
No Suggested Reading articles found!