Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094201    DOI: 10.1088/1674-1056/27/9/094201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments

Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖)
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  

Simultaneous two-frequency amplification is highly desirable in cold atom experiments. The nonlinear response would appear in the two-frequency amplification with a semiconductor tapered amplifier (TA) and has a direct influence on the experimental result. We investigated in detail the effects of frequency difference, total power, and power ratio of two seeding lasers on the output components based on a simplified theoretical model. The simulation results showed that the multiple sideband generation in the amplifier due to self-phase and amplitude modulation could be suppressed and the TA tended to linearly amplify the power ratio between two-frequency components, when the two seeding lasers had a large frequency difference. This was verified experimentally in the output power ratio measurement via a calibrated Fabry-Perot interferometer method with a good linearity and an uncertainty of 1%. We also discussed the consequences of power ratio responses in the amplification in light of cold atom experiments, especially in the ac Stark shift related phase error of Raman-type atom interferometers (AIs). It was shown that the fluctuation of intensity ratio of Raman beams may induce significant systematic errors for an AI gyroscope.

Keywords:  two-frequency amplification      self-phase modulation      laser cooling      atom interferometry  
Received:  26 June 2018      Revised:  11 July 2018      Accepted manuscript online: 
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.65.-k (Nonlinear optics)  
  37.25.+k (Atom interferometry techniques)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61473166).

Corresponding Authors:  Yan-Ying Feng     E-mail:  yyfeng@tsinghua.edu.cn

Cite this article: 

Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖) Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments 2018 Chin. Phys. B 27 094201

[1] Chi M, Jensen O B and Petersen P M 2011 Opt. Lett. 36 2626
[2] Liu W X and Sun M Z 2016 Chin. Phys. Lett. 33 024206
[3] Süptitz W, Wokurka G, Strauch F, Kohns P and Ertmer W 1994 Opt. Lett. 19 1571
[4] Bloch I, Greiner M, Mandel O, Hänsch T W and Esslinger T 2001 Phys. Rev. A 64 021402
[5] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
[6] Tien T Q, Maiwald M, Sumpf B, Erbert G and Tränkle G 2008 Opt. Lett. 33 2692
[7] Zhang Y G, Zhang H, Dou G and Xu J G 2017 Acta Phys. Sin. 66 233101 (in Chinese)
[8] Zhang S, Wu W, Wu C W, Li F G, Li T, Wang X and Bao W S 2017 Chin. Phys. B 26 074205
[9] Guo W X and Liu W M 2016 Physics 45 370
[10] Kasevich M and Chu S 1991 Phys. Rev. Lett. 67 181
[11] Wynands R and Nagel A 1999 Appl. Phys. B 68 1
[12] Holzwarth R, Udem Th Hänsch T W, Knight J C, Wadsworth W J and Russell P St J 2000 Phys. Rev. Lett. 85 2264
[13] Cruz F C, Stowe M C and Ye J 2006 Opt. Lett. 31 1337
[14] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
[15] Gustavson T L, Landragin A and Kasevich M A 2000 Classical Quantum Gravity 17 2385
[16] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[17] McGuirk J M, Foster G T, Fixler J B, Snadden M J and Kasevich M A 2002 Phys. Rev. A 65 033608
[18] Durfee D S, Shaham Y K and Kasevich M A 2006 Phys. Rev. Lett. 97 240801
[19] Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bordé C J and Landragin A 2006 Phys. Rev. Lett. 97 010402
[20] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Santos F P D 2011 New J. Phys. 13 065025
[21] Xue H B, Feng Y Y, Wang X J, Chen S and Zhou Z Y 2013 Rev. Sci. Instrum. 84 046104
[22] Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L and Tino G M 2014 Phys. Rev. A 89 023607
[23] Gillot P, Francis O, Landragin A, Santos F, Pereira D and Merlet S 2014 Metrologia 51 L15
[24] Dutta I, Savoie D, Fang B, Venon B, Garrido Alzar C L, Geiger R and Landragin A 2016 Phys. Rev. Lett. 116 183003
[25] Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P and Müller H 2017 Optica 4 1545
[26] Agrawal G P and Olsson N A 1989 IEEE J. Quantum Electron. 25 2297
[27] Ferrari G, Mewes M, Schreck F and Salomon C 1999 Opt. Lett. 24 151
[28] Luo H, Li K, Zhang D F, Gao T Y and Jiang K J 2013 Opt. Lett. 38 1161
[29] Lévéque T, Gauguet A, Chaibi W and Landragin A 2010 Appl. Phys. B 101 723
[30] Zhan S, Duan X C, Zhou M K, Yao H B, Xu W J and Hu Z K 2015 Opt. Lett. 40 29
[31] Cheng B, Gillot P, Merlet S and Pereira Dos Santos F 2015 Phys. Rev. A 92 063617
[32] Hill M T, Tangdiongga E, de Waardt H, Khoe G D and Dorren H J S 2002 Opt. Lett. 27 1625
[33] Siddons P, Adams C S, Ge C and Hughes I G 2008 J. Phys. B:At. Mol. Opt. Phys. 41 155004
[34] Zhang J, Wei D, Xie C and Peng K 2013 Opt. Express 11 1338
[35] Schmidt M 2011 A Mobile High-precision Gravimeter Based on Atom Interferometry (Ph.D. Dissertation) (Berlin:Humboldt-University)
[36] Xue H B, Feng Y Y, Chen S, Wang X J, Yan X S, Jiang Z K and Zhou Z Y 2015 J. Appl. Phys. 117 094901
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[3] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[6] Calibration of a compact absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(9): 093701.
[7] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[8] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[9] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[10] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[11] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[12] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[13] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[14] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[15] Spectral broadening induced by intense ultra-short pulse in 4H-SiC crystals
Chun-hua Xu(徐春华), Teng-fei Yan(闫腾飞), Gang Wang(王刚), Wen-jun Wang(王文军), Jing-kui Liang(梁敬魁), Xiao-long Chen(陈小龙). Chin. Phys. B, 2016, 25(6): 064206.
No Suggested Reading articles found!