Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090301    DOI: 10.1088/1674-1056/27/9/090301
GENERAL Prev   Next  

Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel

Fugang Zhang(张福刚)1, Yongming Li(李永明)1,2
1 School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China;
2 School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
Abstract  

In this paper, we discuss quantum uncertainty relations of quantum coherence through a different method from Ref. [52]. Some lower bounds with parameters and their minimal bounds are obtained. Moreover, we find that for two pairs of measurement bases with the same maximum overlap, quantum uncertainty relations and lower bounds with parameters are different, but the minimal bounds are the same. In addition, we discuss the dynamics of quantum uncertainty relations of quantum coherence and their lower bounds under the amplitude damping channel (ADC). We find that the ADC will change the uncertainty relations and their lower bounds, and their tendencies depend on the initial state.

Keywords:  quantum uncertainty relation      quantum coherence      amplitude damping channel      single qubit state  
Received:  08 April 2018      Revised:  23 June 2018      Published:  05 September 2018
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11671244), the Higher School Doctoral Subject Foundation of Ministry of Education of China (Grant No. 20130202110001), and Fundamental Research Funds for the Central Universities, China (Grant No. 2016CBY003).

Corresponding Authors:  Yongming Li     E-mail:  liyongm@snnu.edu.cn

Cite this article: 

Fugang Zhang(张福刚), Yongming Li(李永明) Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel 2018 Chin. Phys. B 27 090301

[1] Koashi M 2009 New J. Phys. 11 045018
[2] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[3] Vallone G, Marangon D G, Tomasin M and Villoresi P 2014 Phys. Rev. A 90 052327
[4] Cao Z, Zhou H, Yuan X and Ma X 2016 Phys. Rev. X 6 011020
[5] Berta M, Coles P J and Wehner 2014 Phys. Rev. A 90 062127
[6] Walborn S P, Salles A, Gomes R M, Toscano F and Ribeiro P H S 2011 Phys. Rev. Lett. 106 130402
[7] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
[8] Heisenberg W 1927 Physik Z 43 172
[9] Robertson H P 1929 Phys. Rev. 34 163
[10] Deutsch 1983 Phys. Rev. Lett. 50 631
[11] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[12] Puchała Z, Rudnicki L and Zyczkowski K 2013 J. Phys. A:Math. Theor. 46 272002
[13] Rudnicki L, Puchała Z and Zyczkowski K 2014 Phys. Rev. A 89 052115
[14] Kurzyk D, Pawela Ł and Puchała Z 2018 Quantum Inf. Process. 17 193
[15] Ma Z H, Chen Z H and Fei S M 2017 Sci. China-Phys. Mech. Astron. 60 010321
[16] Xiao Y, Guo C, Meng F, Jing N and Yung M H 2017 arXiv:1706.05650[quant-ph]
[17] Puchała Z, Rudnicki L, Krawiec A and Zyczkowski K 2018 J. Phys. A:Math. Theor. 51 175306
[18] Chen B, Cao N P, Fei S M and Long G L 2016 Quantum Inf. Proc. 15 3909
[19] Chen B, Fei S M, and Long G L 2016 Quantum Inf. Proc. 15 2639
[20] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[21] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[22] Rodríguez-Rosario C A, Frauenheim T and Aspuru-Guzik A 2013 arXiv:1308.1245[quant-ph]
[23] Åberg J 2014 Phys. Rev. Lett. 113 150402
[24] Horodecki M and Oppenheim J 2013 Nat. Commun. 4 2059
[25] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Phys. Rev. X 5 021001
[26] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
[27] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[28] Yu C S 2017 Phys. Rev. A 95 042337
[29] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[30] Zhou Y, Zhao Q, Yuan X and Ma X 2017 New J. Phys. 19 123033
[31] Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120
[32] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[33] Zhang Y R, Shao L H, Li Y and Fan H 2016 Phys. Rev. A 93 012334
[34] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
[35] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[36] Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
[37] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[38] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[39] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[40] Peng Y, Jiang Y and Fan H 2016 Phys. Rev. A 93 032326
[41] Brandão G S L F and Gour G 2015 Phys. Rev. Lett. 115 070503
[42] Liu Z W, Hu X and Lloyd S 2017 Phys. Rev. Lett. 118 060502
[43] Hu M L, Shen S Q and Fan H 2017 Phys. Rev. A 96 052309
[44] Hu M L, Hu X, Peng Y, Zhang Y R and Fan H 2017 arXiv:1703.01852[quant-ph]
[45] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003)
[46] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[47] Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
[48] Liu Y, Zou H M and Fang M F 2018 Chin. Phys. B 27 010304
[49] Yang L W and Xia Y J 2017 Chin. Phys. B 26 080302
[50] Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
[51] Singh U, Pati A K and Bera M N 2016 Mathematics 4 47
[52] Yuan X, Bai G, Peng T and Ma X 2017 Phys. Rev. A 96 032313
[53] Zhang F G and Li Y M 2018 Sci. China-Phys. Mech. Astron. 61 080312
[54] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[55] Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
[56] Yao, C, Chen Z, Ma Z, Severini S and Serafini A 2014 Sci. China-Phys. Mech. Astron. 57 1703
[57] Guo Y N, Tian Q L and Zeng K 2017 Quantum Inf. Proc. 16 310
[58] Ming F, Wang D, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Proc. 17 9
[1] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[2] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[3] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[4] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[5] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[6] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[7] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[8] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[9] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[10] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[11] Quantum coherence preservation of atom with a classical driving field under non-Markovian environment
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2017, 26(11): 110303.
[12] Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal
Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2016, 25(10): 104204.
[13] Time evolution of a squeezed chaotic field in an amplitude damping channel when used as a generating field for a squeezed number state
Xu Xing-Lei, Li Hong-Qi, Fan Hong-Yi. Chin. Phys. B, 2015, 24(7): 070306.
[14] Dynamic responses of series parallel-plate mesoscopic capacitors to time-dependent external voltage
Wang Jin-Hua, Quan Jun. Chin. Phys. B, 2015, 24(11): 117303.
[15] Geometric discord for non-X states
Liu Chen, Dong Yu-Li, Zhu Shi-Qun. Chin. Phys. B, 2014, 23(6): 060307.
No Suggested Reading articles found!