Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088501    DOI: 10.1088/1674-1056/27/8/088501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design

Weizhong Chen(陈伟中)1,2, Yao Huang(黄垚)1, Lijun He(贺利军)1, Zhengsheng Han(韩郑生)2,3, Yi Huang(黄义)1
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A reverse-conducting lateral insulated-gate bipolar transistor (RC-LIGBT) with a trench oxide layer (TOL), featuring a vertical N-buffer and P-collector is proposed. Firstly, the TOL enhances both of the surface and bulk electric fields of the N-drift region, thus the breakdown voltage (BV) is improved. Secondly, the vertical N-buffer layer increases the voltage drop VPN of the P-collector/N-buffer junction, thus the snapback is suppressed. Thirdly, the P-body and the vertical N-buffer act as the anode and the cathode, respectively, to conduct the reverse current, thus the inner diode is integrated. As shown by the simulation results, the proposed RC-LIGBT exhibits trapezoidal electric field distribution with BV of 342.4 V, which is increased by nearly 340% compared to the conventional RC-LIGBT with triangular electric fields of 100.2 V. Moreover, the snapback is eliminated by the vertical N-buffer layer design, thus the reliability of the device is improved.

Keywords:  reverse-conducting lateral insulated-gate bipolar transistor (RC-LIGBT)      breakdown voltage      snapback phenomenon  
Received:  09 April 2018      Revised:  17 May 2018      Published:  05 August 2018
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61604027), the Basic and Advanced Technology Research Project of Chongqing Municipality, China (Grant No. cstc2016jcyjA1923), the Scientific and Technological Research Foundation of Chongqing Municipal Education Commission, China (Grant No. KJ1500404), the Youth Natural Science Foundation of Chongqing University of Posts and Telecommunications, China (Grant Nos. A2015-50 and A2015-52), the Chongqing Key Laboratory Improvement Plan, China (Chongqing Key Laboratory of Photo Electronic Information Sensing and Transmitting Technology) (Grant No. cstc2014pt-sy40001), and the University Innovation Team Construction Plan Funding Project of Chongqing, China (Architecture and Core Technologies of Smart Medical System) (Grant No. CXTDG201602009).

Corresponding Authors:  Weizhong Chen, Yao Huang     E-mail:  cwz@cqu.edu.cn;632752486@qq.com

Cite this article: 

Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义) A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design 2018 Chin. Phys. B 27 088501

[1] Zhu J, Zhang L, Sun W, Du Y C, Huang K Q, Chen M, Shi L X, Gu Y and Zhang S 2016 IEEE Trans. Electron. Dev. 63 1161
[2] Sun W, Zhu J, Zhang L, Yu H, D Y C, Huang K Q, Lu S L, Shi L X and Yi Y B 2015 IEEE Electron. Dev. Lett. 36 693
[3] Zhu J, Sun W, Dai W, Zhang L, Liu S L, Shi L X, Yi Y B, Zhang S and Sun W 2014 IEEE Trans. Electron. Dev. 61 3814
[4] Son W S, Sohn Y H and Choi S 2004 Microelectron. J. 35 393
[5] Varadarajan K R, Chow T P, Wang J, Liu R and Gonzalez F 2007 IEEE ISPSD 2007 p. 233
[6] Luo X R, Wang Q, Yao G L, Wang Y G and Zhou K 2013 Chin. Phys. B 22 027303
[7] Napoli E, Spirito P, Strollo A G M, Frisina F, Fragapane L and Fagone D 2002 IEEE Electron Dev. Lett. 23 532
[8] Zhang L, Zhu J, Sun W, Du Y C, Yu H, Hua K Q and Shi L X 2015 IEEE ISPSD p. 49
[9] Chen W Z, Li Z H, Ren M, Zhang J P, Zhang B, Liu Y, Hua Q, Mao K and Li Z J 2013 IEEE ISPSD p. 265
[10] Chen W Z, Li Z H, Zhang B, Ren M, Zhang J P, Liu Y and Li Z J 2014 Chin. Phys. B 23 018505
[11] Byeon D S, Chun J H, Lee B H, Kim D Y, Han M K and Choi Y I 1999 Microelectron. J. 30 571
[12] Chul J H, Byeon D S, Oh J K, Han M K and Choi Y K 2000 IEEE ISPSD p. 149
[13] Chen W, Zhang B and Li Z J 2010 IEEE Electron Dev. Lett. 31 467
[14] Zhu J, Zhang L, Sun W, Chen M, Zhou M, Zhao M, Shi L X, Gu Y and Zhang S 2016 IEEE Trans. Electron Dev. 63 2003
[15] Zhu J, Zhang L, Sun W, Chen M, Zhao M, Huang X, Chen J and Qian Y 2017 IEEE Electron Dev. Lett. 64 1187
[16] Sin J K O and Mukherjee S 1991 IEEE Electron Dev. Lett. 12 45
[17] Green D W, Sweet M, Vershinin K V, Hardikar S and Narayanan E M S 2005 IEEE Trans. Electron Dev. 52 2482
[18] Jiang H P, Zhang B, Chen W J, Li Z J, Liu C, Rao Z G and Dong B 2012 IEEE Electron. Dev. Lett. 33 417
[19] Vemulapati U, Kaminski N, Silber D, Storasta L and Rahimo M 2014 IET Circuits Device Syst. 8 168
[20] Chen W Z, Zhang B, Li Z H, Ren M and Li Z J 2012 IEEE ICSICT p. 1
[21] Taurus Medici D A V I N C I User's Guides, Synopsys 2013
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[5] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[6] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[7] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[8] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[9] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[10] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[11] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[12] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[13] Improving breakdown voltage performance of SOI power device with folded drift region
Qi Li(李琦), Hai-Ou Li(李海鸥), Ping-Jiang Huang(黄平奖), Gong-Li Xiao(肖功利), Nian-Jiong Yang(杨年炯). Chin. Phys. B, 2016, 25(7): 077201.
[14] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
[15] A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology
Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉). Chin. Phys. B, 2016, 25(2): 027306.
No Suggested Reading articles found!