Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 088106    DOI: 10.1088/1674-1056/27/8/088106
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors

Liu-Hong Ma(马刘红)1,3, Wei-Hua Han(韩伟华)2,3, Xiao-Song Zhao(赵晓松)2,3, Yang-Yan Guo(郭仰岩)2,3, Ya-Mei Dou(窦亚梅)2,3, Fu-Hua Yang(杨富华)3,4
1 School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center for Semiconductor Integrated Technology, Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We discuss the random dopant effects in long channel junctionless transistor associated with quantum confinement effects. The electrical measurement reveals the threshold voltage variability induced by the random dopant fluctuation. Quantum transport features in Hubbard systems are observed in heavily phosphorus-doped channel. We investigate the single electron transfer via donor-induced quantum dots in junctionless nanowire transistors with heavily phosphorus-doped channel, due to the formation of impurity Hubbard bands. While in the lightly doped devices, one-dimensional quantum transport is only observed at low temperature. In this sense, phonon-assisted resonant-tunneling is suppressed due to misaligned levels formed in a few isolated quantum dots at cryogenic temperature. We observe the Anderson-Mott transition from isolate electron state to impurity bands as the doping concentration is increased.
Keywords:  junctionless nanowire transistor      quantum transport      Hubbard band      quantum dot     
Received:  15 March 2018      Published:  05 August 2018
PACS:  81.07.Gf (Nanowires)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.-c (Electronic transport in interface structures)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0200503), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 18IRTSTHN016), and the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126).
Corresponding Authors:  Wei-Hua Han, Fu-Hua Yang     E-mail:  weihua@semi.ac.cn;fhyang@semi.ac.cn

Cite this article: 

Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华) Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors 2018 Chin. Phys. B 27 088106

[1] Wagner C and Harned N 2010 Nat. Photon. 4 24
[2] Wang W, Su Y F, Liu C R, Li D X, Wang P and Duan Z Y 2015 Chin. Phys. Lett. 32 128102
[3] Nayak K, Agarwal S, Bajaj M, Murali K V and Rao V R 2015 IEEE Trans. Electron Dev. 62 685
[4] Akhavan N D, Ferain I, Yu R, Razavi P and Colinge J P 2012 Solid-State Electron. 70 92
[5] Li Y and Hwang C H 2007 J. Appl. Phys. 102 084509
[6] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[7] Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O and Simmons M Y 2012 Nat. Nanotechnol. 7 242
[8] Moraru D, Samanta A, Anh L T, Mizuno T, Mizuta H and Tabe M 2015 Sci. Rep. 4 6219
[9] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
[10] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A and White M 2010 Nat. Nanotechnol. 5 225
[11] Ma L H, Han W H, Wang H, Lyu Q F, Zhang W, Yang X and Yang F H 2016 Chin. Phys. B 25 068103
[12] Park J T, Kim J Y, Lee C W and Colinge J P 2010 Appl. Phys. Lett. 97 172101
[13] Mizuno T, Okumtura J and Toriumi A 1994 IEEE Trans. Electron. Dev. 41 2216
[14] Prati E, Hori M, Guagliardo F, Ferrari G and Shinada T 2012 Nat. Nanotechnol. 7 443
[15] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113715
[16] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[17] Mott N F and Davis E A 2012 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press)
[18] Ma L H, Han W H, Wang H, Hong W T, Lyu Q F, Yang X and Yang F H 2015 J. Appl. Phys. 117 034505
[19] Rosenbaum R 1991 Phys. Rev. B 44 3599
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[5] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[6] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[7] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[8] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[12] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[13] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!