Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083601    DOI: 10.1088/1674-1056/27/8/083601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study

Han-Xing Zhang(张汉星)1,2, Chao-Hao Hu(胡朝浩)1,2, Dian-Hui Wang(王殿辉)1,2, Yan Zhong(钟燕)1,2, Huai-Ying Zhou(周怀营)1,2, Guang-Hui Rao(饶光辉)1,2
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
2 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  Structural, electronic, and magnetic properties of AunGd (n=6-15) small clusters are investigated by using first principles spin polarized calculations and combining with the ab-initio evolutionary structure simulations. The calculated binding energies indicate that after doping a Gd atom AunGd cluster is obviously more stable than a pure Aun+1 cluster. Au6Gd with the quasiplanar structure has a largest magnetic moment of 7.421 μB. The Gd-4f electrons play an important role in determining the high magnetic moments of AunGd clusters, but in Au6Gd and Au12Gd clusters the unignorable spin polarized effects from the Au-6s and Au-5d electrons further enhance their magnetism. The HOMO-LUMO (here, HOMO and LUMO stand for the highest occupied molecular orbital, and the lowest unoccupied molecular orbital, respectively) energy gaps of AunGd clusters are smaller than those of pure Aun+1 clusters, indicating that AunGd clusters have potential as new catalysts with enhanced reactivity.
Keywords:  AunGd clusters      structural evolution      first-principles calculations      electronic structure      magnetic property  
Received:  31 January 2018      Revised:  17 April 2018      Published:  05 August 2018
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB643703), the National Natural Science Foundation of China (Grant Nos. 11464008 and 51401060), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2014GXNSFGA118001 and 2016GXNSFGA380001), and the Guangxi Provincial Key Laboratory of Information Materials (Grant Nos. 1210908-215-Z and 131022-Z).
Corresponding Authors:  Chao-Hao Hu     E-mail:  chaohao.hu@guet.edu.cn

Cite this article: 

Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉) Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study 2018 Chin. Phys. B 27 083601

[1] Hammer B and Nørskov J K 1995 Nature 376 238
[2] Sun K J, Kohyama M, Tanaka S and Takeda S 2015 J. Energy Chem. 24 485
[3] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J and Delmon B 1993 J. Catal. 144 175
[4] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[5] Lim Y T, Cho M Y, Choi B S, Lee J M and Chung B H 2008 Chem. Commun. 49 30
[6] Wang J, Liu J, Liu Y, Wang L M, Cao M J, Ji Y L, Wu X C, Xu Y Y, Bai B, Miao Q, Chen C Y and Zhao Y L 2016 Adv. Mater. 28 8950
[7] Gao Y, Wang B, Lei Y Y, Teo B K and Wang Z G 2016 Nano Res. 9 622
[8] Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S and Hirai T 2012 J. Am. Chem. Soc. 134 6309
[9] Haruta M 1997 Catal. Today 36 153
[10] Hughes M D, Xu Y J, Jenkins P, McMorn P, Landon P, Enache D I, Carley A F, Attard G A, Hutchings G J, King F, Stitt E H, Johnston P, Griffin K and Kiely CJ 2005 Nature 437 1132
[11] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N and Ribeiro F H 2012 J. Am. Chem. Soc. 134 4700
[12] Nakaso K, Shimada M, Okuyama K and Deppert K 2002 J. Aerosol Sci. 33 1061
[13] Arcidiacono S, Bieri N R, Poulikakos D and Grigoropoulos C P 2004 Int. J. Multiphase Flow 30 979
[14] Han M Y, Gao X H, Su J Z and Nie S 2001 Nat. Biotechnol. 19 631
[15] Vilhelmsen L B, Walton K S and Sholl D S 2012 J. Am. Chem. Soc. 134 12807
[16] Piotrowski M J, Piquini P and Da Silva JLF 2010 Phys. Rev. B 81 155446
[17] Yang A P, Fa W and Dong J M 2010 J. Phys. Chem. A 114 4031
[18] Yang H W, Lu W C, Zhao L Z, Qin W, Yang W H and Xue X Y 2013 J. Phys. Chem. A 117 2672
[19] Hu C H, Chizallet C, Toulhoat H and Raybaud P 2009 Phys. Rev. B 79 195416
[20] Zorriasatein S, Joshi K and Kanhere D G 2008 J. Chem. Phys. 128 184314
[21] Chen M X and Yan X H 2008 J. Chem. Phys. 128 174305
[22] Rodríguez-Kesser P L and Rodríguez-Domínguez A R 2015 Comput. Theor. Chem. 1066 55
[23] Yadav B D and Kumar V 2010 Appl. Phys. Lett. 97 133701
[24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[25] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[26] Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych OO and Solozhenko V L 2009 Nature 457 863
[27] Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O and Zhou H Y 2013 Phys. Rev. Lett. 110 165504
[28] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y and Wang H T 2014 Phys. Rev. Lett. 112 085502
[29] Bhattacharya S, Sonin B H, Jumonville C J, Ghiringhelli L M and Maron N 2015 Phys. Rev. B 91 241115
[30] Blochl P E 1994 Phys. Rev B 50 17953
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Assadollahzadeh B and Schwerdtfeger P 2009 J. Chem. Phys. 131 064306
[34] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[35] Gao Y, Chen L, Dai X, Song R X, Wang B and Wang Z G 2015 RSC Adv. 5 32198
[36] Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Phys. Rev. B 70 165403
[37] Gao Y and Wang Z G 2016 Chin. Phys. B 25 083102
[38] Tuboltsev V, Savin A, Pirojenko A and Räisänen J 2013 ACS Nano 7 6691
[39] Li C Y, Wu C M, Karna S K, Wang C W, Hsu D, Wang C J and Li W H 2011 Phys. Rev. B 83 174446
[40] Die D, Zheng B X, Zhao L Q, Zhu Q W and Zhao Z Q 6 Sci. Rep. 6 31978
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[4] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[5] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[6] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[7] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[8] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[9] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[10] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[11] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[12] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[13] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[14] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!