Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080503    DOI: 10.1088/1674-1056/27/8/080503
GENERAL Prev   Next  

Phase transitions of the five-state clock model on the square lattice

Yong Chen(陈勇)1, Zhi-Yuan Xie(谢志远)2, Ji-Feng Yu(余继锋)1
1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  

Using the tensor renormalization group method based on the higher-order singular value decomposition, we have studied the phase transitions of the five-state clock model on the square lattice. The temperature dependence of the specific heat indicates the system has two phase transitions, as verified clearly by the correlation function at three representative temperatures. By calculating the magnetic susceptibility, we obtained only the upper critical temperature as Tc2=0.9565(7). Investigating the fixed-point tensor, we precisely locate the transition temperatures at Tc1=0.9029(1) and Tc2=0.9520(1), consistent well with the Monte Carlo and the density matrix renormalization group results.

Keywords:  five-state clock model      phase transition      tensor renormalization group      HOTRG  
Received:  23 April 2018      Revised:  12 May 2018      Published:  05 August 2018
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.10.Cc (Renormalization group methods)  
  75.10.Hk (Classical spin models)  
Fund: 

Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 531107040857), the Natural Science Foundation of Hunan Province, China (Grant No. 851204035), and the National Natural Science Foundation of China (Grant No. 11774420).

Corresponding Authors:  Ji-Feng Yu     E-mail:  yujifeng@hnu.edu.cn

Cite this article: 

Yong Chen(陈勇), Zhi-Yuan Xie(谢志远), Ji-Feng Yu(余继锋) Phase transitions of the five-state clock model on the square lattice 2018 Chin. Phys. B 27 080503

[1] Minnhagen P 1987 Rev. Mod. Phys. 59 1001
[2] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[3] Kosterlitz J M and Thouless D J 1974 J. Phys. C 7 1046
[4] Elitzur S, Pearson R B and Shigemitsu J 1979 Phys. Rev. D 19 3698
[5] Savit R 1980 Rev. Mod. Phys. 52 453
[6] Ortiz G, Cobanera E and Nussinov Z 2012 Nucl. Phys. B 854 780
[7] Einhorn M B, Savit R and Rabinovici E 1980 Nucl. Phys. B 170 16
[8] Cardy J L 1980 J. Phys. A 13 1507
[9] Fröhlich J and Spencer T 1981 Commun. Math. Phys. 81 527
[10] Tobochnik J 1982 Phys. Rev. B 26 6201
[11] Tomita Y and Okabe Y 2002 Phys. Rev. B 65 184405
[12] Rastelli E, Regina S and Tassi A 2004 Phys. Rev. B 69 174407
[13] Lapilli C M, Pfeifer P and Wexler C 2006 Phys. Rev. Lett. 96 140603
[14] Borisenko O, Chelnokov V, Cortese G, Fiore R, Gravina M and Papa A 2012 Phys. Rev. E 85 021114
[15] Borisenko O, Cortese G, Fiore R, Gravina M and Papa A 2011 Phys. Rev. E 83 041120
[16] Kim D H 2017 Phys. Rev. E 96 052130
[17] Baek S K, Minnhagen P and Kim B J 2009 Phys. Rev. E 80 060101
[18] Chen J, Liao H J, Xie H D, Han X J, Huang R Z, Cheng S, Wei Z C, Xie Z Y and Xiang T 2017 Chin. Phys. Lett 34 050503
[19] José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217
[20] Chatelain C 2014 J. Stat. Mech. 11 P11022
[21] Kumano Y, Hukushima K, Tomita Y and Oshikawa M 2013 Phys. Rev. B 88 104427
[22] Baek S K, Mäkelä H, Minnhagen P and Kim B J 2013 Phys. Rev. E 88 012125
[23] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[24] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[25] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[26] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[27] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[28] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[29] Zhao H H, Xie Z Y, Xiang T and Imada M 2016 Phys. Rev. B 93 125115
[30] Yu J F, Xie Z Y, Meurice Y, Liu Y Z, Denbleyker A, Zou H Y, Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308
[31] Qin M P, Chen J, Chen Q N, Xie Z Y, Kong X, Zhao H H, Normand B and Xiang T 2013 Chin. Phys. Lett. 30 076402
[32] Wang S, Xie Z Y, Chen J, Normand B and Xiang T 2014 Chin. Phys. Lett. 31 070503
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[12] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[13] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[14] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!