Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077401    DOI: 10.1088/1674-1056/27/7/077401

Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13

Jun Luo(罗军)1,2, Jie Yang(杨杰)1, S Maeda3, Zheng Li(李政)1,2, Guo-Qing Zheng(郑国庆)1,2,3
1 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Okayama University, Okayama 700-8530, Japan

The interplay between superconductivity and structural phase transition has attracted enormous interest in recent years. For example, in Fe-pnictide high temperature superconductors, quantum fluctuations in association with structural phase transition have been proposed to lead to many novel physical properties and even the superconductivity itself. Here we report a finding that the quasi-skutterudite superconductors (Sr1-xCax)3Ir4Sn13 (x=0, 0.5, 1) and Ca3Rh4Sn13 show some unusual properties similar to the Fe-pnictides, through 119Sn nuclear magnetic resonance (NMR) measurements. In (Sr1-xCax)3Ir4Sn13, the NMR linewidth increases below a temperature T* that is higher than the structural phase transition temperature Ts. The spin-lattice relaxation rate (1/T1) divided by temperature (T), 1/T1T and the Knight shift K increase with decreasing T down to T*, but start to decrease below T*, and followed by more distinct changes at Ts. In contrast, none of the anomalies is observed in Ca3Rh4Sn13 that does not undergo a structural phase transition. The precursory phenomenon above the structural phase transition resembles that occurring in Fe-pnictides. In the superconducting state of Ca3Ir4Sn13, 1/T1 decays as exp(-/kBT) with a large gap =2.21 kBTc, yet without a Hebel-Slichter coherence peak, which indicates strong-coupling superconductivity. Our results provide new insight into the relationship between superconductivity and the electronic-structure change associated with structural phase transition.

Keywords:  nuclear magnetic resonance      antiferromagnetic fluctuation      structural phase transition      phase diagram  
Received:  09 April 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  74.25.nj (Nuclear magnetic resonance)  
  74.40.-n (Fluctuation phenomena)  
  74.25.Dw (Superconductivity phase diagrams)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377 and 11634015), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020200). J. Y. is supported by the Youth Innovation Promotion Association of CAS.

Corresponding Authors:  Jie Yang, Guo-Qing Zheng     E-mail:;

Cite this article: 

Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆) Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13 2018 Chin. Phys. B 27 077401

[1] Moncton D E, Axe J D and Disalvo F J 1977 Phys. Rev. B 16 801
[2] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A and Sasaki T 2003 Nature 422 53
[3] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[4] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[5] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
[6] Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
[7] Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265
[8] Yang J, Zhou R, Wei, L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[9] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A and Fisher I R 2016 Science 352 958
[10] Lederer S, Schattner Y, Berg E and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905
[11] Remeika J P, Espinosa G P, Cooper A S, Barz H, Rowell J M, McWhan D B, Vandenberg J M, Moncton D E, Fisk Z, Woolf L D, Hamaker H C, Maple M B, Shirane G and Thomlinson W 1980 Solid State Commun. 34 923
[12] Kase N, Hayamizu H and Akimitsu J 2011 Phys. Rev. B 83 184509
[13] Espinosa G P 1980 Mater. Res. Bull. 15 791
[14] Espinosa G P, Cooper A S and Barz H 1982 Mater. Res. Bull. 17 963
[15] Yang J H, Chen B, Michioka C and Yoshimura K 2010 J. Phys. Soc. Jpn. 79 113705
[16] Zhou S Y, Zhang H, Hong X C, Pan B Y, Qiu X, Dong W N, Li X L and Li S Y 2012 Phys. Rev. B 86 064504
[17] Wang K F and Petrovic C 2012 Phys. Rev. B 86 024522
[18] Klintberg L E, Goh S K, Alireza P L, Saines P J, Tompsett D A, Logg P W, Yang J H, Chen B, Yoshimura K and Grosche F M 2012 Phys. Rev. Lett. 109 237008
[19] Goh S K, Tompsett D A, Saines P J, Chang H C, Matsumoto T, Imai M, Yoshimura K and Grosche F M 2015 Phys. Rev. Lett. 114 097002
[20] Yu W C, Cheung Y W, Saines P J, Imai M, Matsumoto T, Michioka C, Yoshimura K and Goh S K 2015 Phys. Rev. Lett. 115 207003
[21] Mazzone D G, Gerber S, Gavilano J L, Sibille R, Medarde M, Delley B, Ramakrishnan M, Neugebauer M, Regnault L P, Chernyshov D, Piovano A, Fernandez-Diaz T M, Keller L, Cervellino A, Pomjakushina E, Conder K and Kenzelmann M 2015 Phys. Rev. B 92 024101
[22] Lue C S, Kuo C N, Tseng C W, Wu K K, Liang Y H, Du C H and Kuo Y K 2016 Phys. Rev. B 93 245119
[23] Fang A F, Wang X B, Zheng P and Wang N L 2014 Phys. Rev. B 90 035115
[24] Kuo C N, Liu H F, Lue C S, Wang L M, Chen C C and Kuo Y K 2014 Phys. Rev. B 89 094520
[25] Chen B, Yang J, Guo Y and Yoshimura K 2015 Euro. Phys. Lett. 111 17005
[26] Tompsett D A 2014 Phys. Rev. B 89 075117
[27] Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[28] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T,Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382
[29] Zhou R, Xing L Y, Wang X C, Jin C Q and Zheng G Q 2016 Phys. Rev. B 93 060502(R)
[30] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[31] Kawasaki S, Tani Y, Mabuchi T, Kudo K, Nishikubo Y, Mitsuoka D, Nohara M and Zheng G Q 2015 Phys. Rev. B 91 060510(R)
[32] Li Z, Jiao W H, Cao G H and Zheng G Q 2016 Phys. Rev. B 94 174511
[33] Dahm T and Ueda K 2007 Phys. Rev. Lett. 99 187003
[34] Nakai Y, Ishida K, Sugawara H, Kikuchi D and Sato H 2008 Phys. Rev. B 77 041101(R)
[35] Toda M, Sugawara H, Magishi K, Saito T, Koyama K, Aoki Y and Sato H 2008 J. Phys. Soc. Jpn. 77 124702
[36] Hu Y J, Cheung Y W, Yu W C, Imai M, Kanagawa H, Murakawa J, Yushimura K and Goh S K 2017 Phys. Rev. B 95 155142
[37] Maeda S, Matano K, Yatagai R, Oguchi T and Zheng G Q 2015 Phys. Rev. B 91 174516
[38] Zheng G Q, Ozaki H, Kitaoka Y, Kuhns P, Reyes A P and Moulton W G 2002 Phys. Rev. Lett. 88 077003
[39] Kotegawa H, Yogi M, Imamura Y, Kawasaki Y, Zheng G Q, Kitaoka Y, Ohsaki S, Sugawara H, Aoki Y and Sato H 2003 Phys. Rev. Lett. 90 027001
[40] Sarkar R, Brueckner F, Guenther M, Wang K F, Petrovic C, Biswas P K, Luetkens H, Morenzoni E, Amato A and Klauss H H 2015 Physica B 479 51
[41] Gerber S, Gavilano J L, Medarde M, Pomjakushin V, Baines C, Pomjakushina E, Conder K and Kenzelmann M 2013 Phys. Rev. B 88 104505
[42] Biswas P K, Guguchia Z, Khasanov R, Chinotti M, Li L, Wang K F, Petrovic C and Morenzoni E 2015 Phys. Rev. B 92 195122
[43] Hou J, Wong C H, Lortz R, Sibille R and Kenzelmann M 2016 Phys. Rev. B 93 134505
[44] Kitaoka Y, Ohsugi S, Asayama K and Ohtani T 1992 Physica C 192 272
[45] Allen P B and Rainer D 1991 Nature 349 396
[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[3] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[4] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[5] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[6] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[7] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[8] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[9] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[12] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[13] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[14] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[15] Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅). Chin. Phys. B, 2019, 28(8): 087401.
No Suggested Reading articles found!