Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070504    DOI: 10.1088/1674-1056/27/7/070504
GENERAL Prev   Next  

Mean-square composite-rotating consensus of second-order systems with communication noises

Li-po Mo(莫立坡)1, Shao-yan Guo(郭少岩)1, Yong-guang Yu(于永光)2
1 School of Science, Beijing Technology and Business University, Beijing 100048, China;
2 Department of Mathematics, Beijing Jiaotong University, Beijing 100044, Ch
Abstract  We study the mean-square composite-rotating consensus problem of second-order multi-agent systems with communication noises, where all agents rotate around a common center and the center of rotation spins around a fixed point simultaneously. Firstly, a time-varying consensus gain is introduced to attenuate to the effect of communication noises. Secondly, sufficient conditions are obtained for achieving the mean-square composite-rotating consensus. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.
Keywords:  multi-agent systems      mean-square consensus      composite-rotating      communication noises  
Received:  18 December 2017      Revised:  03 April 2018      Published:  05 July 2018
PACS:  05.65.+b (Self-organized systems)  
  02.10.Yn (Matrix theory)  
  87.10.-e (General theory and mathematical aspects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61304155 and 11371049) and Beijing Municipal Government Foundation for Talents, China (Grant No. 2012D005003000005).
Corresponding Authors:  Li-po Mo     E-mail:

Cite this article: 

Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光) Mean-square composite-rotating consensus of second-order systems with communication noises 2018 Chin. Phys. B 27 070504

[1] Fax J A and Murray R M 2004 IEEE Trans. Autom. Control 49 1465
[2] Ren W and Atkins E 2007 International Journal of Robust and Nonlinear Control 17 1002
[3] Vicsek T, Czirok A and Benjacob E 1995 Phys. Rev. Lett. 75 1226
[4] Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Autom. Control 48 988
[5] Olfati-Saber R and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[6] Ren W and Beard R W 2005 IEEE Trans. Autom. Control 50 655
[7] Fiorelli E, Leonard N E and Bhatta P 2006 IEEE/OES Autonomous Underwater Vehicles 134
[8] Sepulchre R, Paley D A and Leonard N E 2007 IEEE Trans. Autom. Control 52 811
[9] Sepulchre R, Paley D A and Leonard N E 2008 IEEE Trans. Autom. Control 53 706
[10] Ren W 2009 IEEE Trans. Autom. Control 54 1330
[11] Lin P and Jia Y 2010 Systems & Control Letters 59 587
[12] Lin P, Qin K and Li Z 2011 Systems & Control Letters 60 365
[13] Mo L and Yu Y 2017 Acta Automatica Sin. 43 1665
[14] Lin P, Lu W and Song Y 2014 Chin. Phys. B 23 040503
[15] Huang W, Zheng W and Mo L 2017 International Journal of Distributed Sensor Networks 13 1
[16] Li T and Zhang J 2009 Automatica 45 1929
[17] Cheng L, Hou Z and Tan M 2011 IEEE Trans. Autom. Control 56 1958
[18] Cheng L, Hou Z and Tan M 2014 IEEE Trans. Autom. Control 59 261
[19] Guo S, Mo L and Yu Y 2018 Journal of Franklin Institute 355 3717
[20] Godsil C and Royle G 2001 Algebraic Graph Theory (New York:Springer-Verlag)
[1] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[2] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[3] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[4] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[5] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[6] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[7] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[8] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[9] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[10] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[11] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
[12] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng, Wang Zheng-Jie, Fan Ning-Jun. Chin. Phys. B, 2015, 24(2): 020203.
[13] A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity
Wang Liang-Shun, Wu Zhi-Hai. Chin. Phys. B, 2014, 23(9): 098901.
[14] Tracking problem under a time-varying topology
Dong Li-Jing, Chai Sen-Chun, Zhang Bai-Hai, Nguang Sing-Kiong. Chin. Phys. B, 2014, 23(6): 060502.
[15] Collective composite-rotating consensus of multi-agent systems
Lin Peng, Lu Wan-Ting, Song Yong-Duan. Chin. Phys. B, 2014, 23(4): 040503.
No Suggested Reading articles found!