Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067302    DOI: 10.1088/1674-1056/27/6/067302

Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons

Yu-Rui Fang(方蔚瑞)1,2, Xiao-Rui Tian(田小锐)3
1 Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, SE-412 96, Göteborg, Sweden;
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
Abstract  On the assumption that the resonant surface plasmons on a spherical nanoparticle are formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match with those of the surface plasmons on a semi-infinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.
Keywords:  surface plasmons      surface waves      scattering of particles      dispersion relations  
Received:  14 December 2017      Revised:  22 March 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  91.30.Fn (Surface waves and free oscillations)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  11.55.Fv (Dispersion relations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11704058) and the Fundamental Research Funds for the Central Universities,China (Grant No.DUT16RC (3)111).
Corresponding Authors:  Yu-Rui Fang     E-mail:

Cite this article: 

Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐) Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons 2018 Chin. Phys. B 27 067302

[1] Krenn J R, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg F R and Weeber J C 2000 Appl. Phys. Lett. 77 3379
[2] Laroche T and Girard C 2006 Appl. Phys. Lett. 89 233119
[3] Novotny L 2007 Phys. Rev. Lett. 98 266802
[4] Cubukcu E and Capasso F 2009 Appl. Phys. Lett. 95 201101
[5] Dorfmuller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F and Kern K 2009 Nano Lett. 9 2372
[6] Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 Acs Nano 4 2649
[7] Bin Hasan S, Filter R, Ahmed A, Vogelgesang R, Gordon R, Rockstuhl C and Lederer F 2011 Phys. Rev. B 84 195405
[8] Ogale S B, Bhoraskar V N and Panat P V 1978 Pramana 11 135
[9] Scholl J A, Koh A L and Dionne J A 2012 Nature 483 421
[10] Willatzen M 2009 Phys. Rev. A 80 043805
[11] Liaw J W 2006 J. Opt. Soc. Am. A 23 108
[12] Liaw J W and Wu P T 2008 Opt. Express 16 4945
[13] Liu C, Xie Y and Wang Z 2017 Chin. Phys. B 26 067803
[14] Guasoni M 2011 J. Opt. Soc. Am. B 28 1396
[15] Park T H and Nordlander P 2009 Chem. Phys. Lett. 472 228
[16], in 2014
[17] Liu J D, Song F, Zhang J, Liu S J, Wang F X and Wang L C 2014 Chin. Phys. B 23 084206
[18] Aubry A, Lei D Y, Maier S A and Pendry J B 2011 Acs Nano 5 3293
[19] Fernandez-Dominguez A I, Maier S A and Pendry J B 2012 Phys. Rev. B 85 165148
[20] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[21] Schmidt M A, Prill Sempere L N, Tyagi H K, Poulton C G and Russell P S J 2008 Phys. Rev. B 77 033417
[1] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[2] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[3] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[4] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[5] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[6] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[7] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[8] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[9] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[10] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[11] Diffraction properties of binary graphene sheet arrays
Yang Fan(樊洋), Cong Chen(陈聪), Ding-Guo Li(李定国). Chin. Phys. B, 2017, 26(1): 017302.
[12] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[13] Excitation of anti-symmetric coupled spoof SPPs in 3D SIS waveguides based on coupling
Li-li Tian(田莉莉), Yang Chen(陈杨), Jian-long Liu(刘建龙), Kai Guo(郭凯), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2016, 25(7): 078401.
[14] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[15] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
No Suggested Reading articles found!