Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066104    DOI: 10.1088/1674-1056/27/6/066104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of temperature and point defects on the stability of C15 Laves phase in iron: A molecular dynamics investigation

Hao Wang(王昊)1,2, Ning Gao(高宁)3, Guang-Hong Lü(吕广宏)1, Zhong-Wen Yao(姚仲文)2
1 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100190, China;
2 Mechanical and Materials Engineering, Queen's University, Kinston, ON K7L 3N6, Canada;
3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract  Molecular dynamics simulations are used to investigate the stabilities of C15 Laves phase structures subjected to temperature and point defects. The simulations based on different empirical potentials show that the bulk perfect C15 Laves phase appears to be stable under a critical temperature in a range from 350 K to 450 K, beyond which it becomes disordered and experiences an abrupt decrement of elastic modulus. In the presence of both vacancy and self-interstitial, the bulk C15 Laves phase becomes unstable at room temperature and prefers to transform into an imperfect body centered cubic (BCC) structure containing free vacancies or vacancy clusters. When a C15 cluster is embedded in BCC iron, the annihilation of interstitials occurs due to the presence of the vacancy, while it exhibits a phase transformation into a (1/2)<111> dislocation loop due to the presence of the self-interstitial.
Keywords:  C15 Laves phase      stability      elastic modulus      structural evolution  
Received:  13 September 2017      Revised:  08 February 2018      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Az (Theory and models of radiation effects)  
  61.82.Bg (Metals and alloys)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11675230 and 11375242) and Canada's Natural Sciences and Engineering Research Council NSERC Discovery Grant and Canada Foundation for Innovation CFI.
Corresponding Authors:  Ning Gao, Zhong-Wen Yao     E-mail:  ning.gao@impcas.ac.cn;yaoz@queensu.ca

Cite this article: 

Hao Wang(王昊), Ning Gao(高宁), Guang-Hong Lü(吕广宏), Zhong-Wen Yao(姚仲文) Effects of temperature and point defects on the stability of C15 Laves phase in iron: A molecular dynamics investigation 2018 Chin. Phys. B 27 066104

[1] Domain C and Becquart C 2001 Phys. Rev. B 65 024103
[2] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[3] Nguyen-Manh D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101
[4] Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M and Mori H 2007 Science 318 956
[5] Wirth B D, Odette G R, Maroudas D and Lucas G E 2000 J. Nucl. Mater. 276 33
[6] Dudarev S L, Bullough R and Derlet P M 2008 Phys. Rev. Lett. 100 135503
[7] Masters B C 1965 Philos. Mag. 11 881
[8] Eyre B L and Bullough R 1965 Philos. Mag. 12 31
[9] Yao Z, Jenkins M L, Hernández-Mayoral M and Kirk M 2010 Philos. Mag. 90 4623
[10] Osetsky Y N, Bacon D J, Serra A, Singh B N and Golubov S I 2000 J. Nucl. Mater. 276 65
[11] Marian J, Wirth B D and Perlado J M 2002 Phys. Rev. Lett. 88 255507
[12] Dérés J, Proville L and Marinica M 2015 Acta Mater. 99 99
[13] Malerba L, Marinica M C, Anento N, Bjorkas C, Nguyen H, Domain C, Djurabekova F, Olsson P, Nordlund K, Serra A, Terentyev D, Willaime F and Becquart C S 2010 J. Nucl. Mater. 406 19
[14] Gao N, Chen J, Kurtz RJ, Wang ZG, Zhang R F and Gao F 2017 J. Phys.:Condens. Matter 29 455301
[15] Gao F, Bacon D J, Osetsky Y N, Flewitt P E J and Lewis T A 2000 J. Nucl. Mater. 276 213
[16] Bacon D J, Gao F and Osetsky Y N 2000 J. Nucl. Mater. 276 1
[17] Marinica M C, Willaime F and Crocombette J P 2012 Phys. Rev. Lett. 108 025501
[18] Dézerald L, Marinica M C, Ventelon L, Rodney D and Willaime F 2014 J. Nucl. Mater. 449 219
[19] Zhang Y, Bai X M, Tonks M R and Biner S B 2015 Scr. Mater. 98 5
[20] Ackland G J, Mendelev M I, Srolovitz D J, Han S and Barashev A V 2004 J. Phys.:Condens. Matter 16 S2629
[21] Alexander K C, Schuh C A, Panzarino J F, Ramos J J and Rupert T J 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[22] Ray J R, Moody M C and Rahman A 1985 Phys. Rev. B 32 733
[23] Wolf J, Mansour K A, Lee M W and Ray J R 1992 Phys. Rev. B 46 8027
[24] Ray J R and Rahman A 1984 J. Chem. Phys. 82 4243
[25] Adams J J, Agosta D S, Leisure R G and Ledbetter H 2006 J. Appl. Phys. 100 113530
[26] Chu F, Lei M, Migliori A, Chen S P and Mitchell T E 1994 Philos. Mag. B 70 867
[27] Foster K, Hightower J E, Leisuret R G and Skripov A V 2000 Philos. Mag. B 80 1667
[28] Izyumov, Yu. A, Naysh, and Ye V N, V. and Syromyatnikov 1975 Fiz. Metal. Metalloved. 39 455
[29] Chu F, Šob M, Siegl R, Mitchell T E and Chen S P 1994 Philos. Mag. B 70 881
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!