Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066101    DOI: 10.1088/1674-1056/27/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fractional Stokes-Einstein relation in TIP5P water at high temperatures

Gan Ren(任淦), Ge Sang(桑革)
Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China
Abstract  Fractional Stokes-Einstein relation described by D~(τ/T ight)ξ is observed in supercooled water, where D is the diffusion constant, τ the structural relaxation time, T the temperature, and the exponent ξ≠-1. In this work, the Stokes-Einstein relation in TIP5P water is examined at high temperatures within 400 K-800 K. Our results indicate that the fractional Stokes-Einstein relation is explicitly existent in TIP5P water at high temperatures, demonstrated by the two usually adopted variants of the Stokes-Einstein relation, D-1and D~T/τ, as well as by D~T/η, where η is the shear viscosity. Both D-1 and D~T/τ are crossed at temperature Tx=510 K. The D-1 is in a fractional form as Dξ with ξ=-2.09 for TTx and otherwise ξ=-1.25. The D~T/τ is valid with ξ=-1.01 for TTx but in a fractional form for T> Tx. The Stokes-Einstein relation D~T/η is satisfied below Tx=620 K but in a fractional form above Tx. We propose that the breakdown of D~T/η may result from the system entering into the super critical region, the fractional forms of D-1 and D~T/τ are due to the disruption of the hydration shell and the local tetrahedral structure as well as the increase of the shear viscosity.
Keywords:  Stokes-Einstein relation      TIP5P water      molecular dynamics      hydration shells  
Received:  15 January 2018      Revised:  22 March 2018      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.20.Gy (Theory and models of liquid structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.2153200) and the China Postdoctoral Science Foundation (Grant No.2016M602712).
Corresponding Authors:  Gan Ren     E-mail:  renganzyl@sina.com

Cite this article: 

Gan Ren(任淦), Ge Sang(桑革) Fractional Stokes-Einstein relation in TIP5P water at high temperatures 2018 Chin. Phys. B 27 066101

[1] Gallo P, Amann-Winkel K, Angell C A, Anisimov M A, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos A Z, Russo J, Sellberg J A, Stanley H E, Tanaka H, Vega C, Xu L and Pettersson L G M 2016 Chem. Rev. 116 7463
[2] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[3] Kumar P, Buldyrev S V, Becker S R, Poole P H, Starr F W and Stanley H E 2007 Proc. Natl. Acad. Sci. USA 104 9575
[4] Chen S H, Mallamace F, Mou C Y, Broccio M, Corsaro C, Faraone A and Liu L 2006 Proc. Natl. Acad. Sci. USA 103 12974
[5] Shi Z, Debenedetti P G and Stillinger F H 2013 J. Chem. Phys. 138 12A526
[6] Hubbard J and Onsager L 1977 J. Chem. Phys. 67 4850
[7] Kumar D H, Patel H E, Kumar V R R, Sundararajan T, Pradeep T and Das S K 2004 Phys. Rev. Lett. 93 144301
[8] Schultz S G and Solomon A K 1961 The Journal of General Physiology 44 1189
[9] Noda A, Hayamizu K and Watanabe M 2001 J. Phys. Chem. B 105 4603
[10] Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou C Y and Chen S H 2006 J. Chem. Phys. 124 161102
[11] Mapes M K, Swallen S F and Ediger M D 2006 J. Phys. Chem. B 110 507
[12] Swallen S F, Bonvallet P A, McMahon R J and Ediger M D 2003 Phys. Rev. Lett. 90 015901
[13] Binder K and Kob W 2011 Glassy materials and disordered solids:An introduction to their statistical mechanics (Scientific:World Scientific)
[14] Habasaki J, Leon C and Ngai K 2017 Top Appl. Phys. 132
[15] Mazza M G, Giovambattista N, Stanley H E and Starr F W 2007 Phys. Rev. E 76 031203
[16] Jeong D, Choi M Y, Kim H J and Jung Y 2010 Phys. Chem. Chem. Phys. 12 2001
[17] Ikeda A and Miyazaki K 2011 Phys. Rev. Lett. 106 015701
[18] Becker S R, Poole P H and Starr F W 2006 Phys. Rev. Lett. 97 055901
[19] Giovambattista N, Mazza M G, Buldyrev S V, Starr F W and Stanley H E 2004 J. Phys. Chem. B 108 6655
[20] de J. Guevara-Rodríguez F and Medina-Noyola M 2003 Phys. Rev. E 68 011405
[21] Ramírez-González P E, López-Flores L, Acuña-Campa H and Medina-Noyola M 2011 Phys. Rev. Lett. 107 155701
[22] Ramírez-González P E and Medina-Noyola M 2009 J. Phys.:Condens. Matter 21 075101
[23] Mahoney M W and Jorgensen W L 2000 J. Chem. Phys. 112 8910
[24] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[25] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[26] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[27] Nosé S 1984 J. Chem. Phys. 81 511
[28] Hoover W G 1985 Phys. Rev. A 31 1695
[29] Hess B 2002 J. Chem. Phys. 116 209
[30] Weingärtner H and Franck E U 2005 Angew. Chem. Int. Ed. 44 2672
[31] Yamada M, Mossa S, Stanley H E and Sciortino F 2002 Phys. Rev. Lett. 88 195701
[32] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[33] Varela L M, García M and Mosquera V C 2003 Phys. Rep. 382 1
[34] Koneshan S, Rasaiah J C, Lynden-Bell R and Lee S 1998 J. Phys. Chem. B 102 4193
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!