Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 063601    DOI: 10.1088/1674-1056/27/6/063601
Special Issue: TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences Prev   Next  

Orienting the future of bio-macromolecular electron microscopy

Fei Sun(孙飞)1,2,3
1 Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
2 Center for Excellent, National Laboratory of Biomacromolecule, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
3 School of Life Science, University of Chinese Academy of Sciences, Beijing 101407, China

With 40 years of development, bio-macromolecule cryo-electron microscopy (cryo-EM) has completed its revolution in terms of resolution and currently plays a highly important role in structural biology study. According to different specimen states, cryo-EM involves three specific techniques:single-particle analysis (SPA), electron tomography and sub-tomogram averaging, and electron diffraction. None of these three techniques have realized their full potential for solving the structures of bio-macromolecules and therefore need additional development. In this review, the current existing bottlenecks of cryo-EM SPA are discussed with theoretical analysis, which include the air-water interface during specimen cryo-vitrification, bio-macromolecular conformational heterogeneity, focus gradient within thick specimens, and electron radiation damage. Furthermore, potential solutions of these bottlenecks worthy of further investigation are proposed and discussed.

Keywords:  cryo-electron microscopy      air-water interface      conformational heterogeneity      focus gradient      radiation damage  
Received:  04 March 2018      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  36.20.-r (Macromolecules and polymer molecules)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  87.64.Ee (Electron microscopy)  
  87.80.-y (Biophysical techniques (research methods))  

Project supported by the Science Funds from the Chinese Academy of Sciences (Grant Nos.ZDKYYQ20170002 and XDB08030202) and the Science Funds from the Ministry of Science and Technology of China (Grant Nos.2017YFA0504700 and 2014CB910700).

Corresponding Authors:  Fei Sun     E-mail:

Cite this article: 

Fei Sun(孙飞) Orienting the future of bio-macromolecular electron microscopy 2018 Chin. Phys. B 27 063601

[1] Downing K H 1988 Ultramicroscopy 24 387
[2] Hayward S B and Glaeser R M 1979 Ultramicroscopy 04 201
[3] Adrian M, Dubochet J, Lepault J and McDowall A W 1984 Nature 308 32
[4] Taylor K A and Glaeser R M 1974 Science 186 1036
[5] Frank J 1990 Q. Rev. Biophys. 23 281
[6] Henderson R and Unwin P N 1975 Nature 257 28
[7] Henderson R 1995 Q. Rev. Biophys. 28 171
[8] Scheres S H 2012 J. Struct. Biol. 180 519
[9] Grigorieff N 2016 Methods Enzymol 579 191
[10] Punjani A, Rubinstein J L, Fleet D J and Brubaker M A 2017 Nature Methods
[11] Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter C S and Carragher B 2005 J. Struct. Biol. 151 41
[12] Mastronarde D 2003 Microscopy and Microanalysis 9 1182
[13] Biyani N, Righetto R D, McLeod R, Caujolle-Bert D, Castano-Diez D, Goldie K N and Stahlberg H 2017 J. Struct. Biol. 198 124
[14] Khoshouei M, Pfeffer S, Baumeister W, Forster F and Danev R 2016 J. Struct. Biol.
[15] Khoshouei M, Radjainia M, Phillips A J, Gerrard J A, Mitra A K, Plitzko J M, Baumeister W and Danev R 2016 Nat. Commun. 7 10534
[16] Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A and Cheng Y 2013 Nat. Methods
[17] Liao M, Cao E, Julius D and Cheng Y 2013 Nature 504 107
[18] Bai X C, Fernandez I S, McMullan G and Scheres S H 2013 ELife 2 e00461
[19] Kuhlbrandt W 2014 Science 343 1443
[20] Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, DavisMI, Pragani R, Boxer M B, Earl L A, Milne J L and Subramaniam S 2016 Cell 165 1698
[21] Yan C, Hang J, Wan R, Huang M, Wong C C and Shi Y 2015 Science 349 1182
[22] Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X and Liu Z 2016 Nature 534 69
[23] Vinothkumar K R, Zhu J and Hirst J 2014 Nature advance online publication
[24] Rosenthal P B and Henderson R 2003 J. Mol. Biol. 333 721
[25] Briggs J A 2013 Curr. Opin. Struct. Biol. 23 261
[26] Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison S C and Walz T 2005 Nature 438 633
[27] Shi D, Nannenga B L, Iadanza M G and Gonen T 2013 ELife 2 e01345
[28] Orlova E V and Saibil H R 2011 Chem. Rev. 111 7710
[29] Cheng Y 2015 Cell 161 450
[30] Thompson R F, Walker M, Siebert C A, Muench S P and Ranson N A 2016 Methods 100 3
[31] Patwardhan A 2017 Acta Crystallogr D:Struct. Biol. 73 503
[32] Glaeser R M 2016 Nat. Methods 13 28
[33] Glaeser R M, Han B G, Csencsits R, Killilea A, Pulk A and Cate J H 2016 Biophys. J. 110 749
[34] Glaeser R M and Han B G 2017 Biophys. Rep. 3 1
[35] Noble A J, Dandey V P, Wei H, Brasch J, Chase J, Acharya P, Tan Y Z, Zhang Z, Kim L Y, Scapin G, Rapp M, Eng E T, Rice W J, Cheng A, Negro C J, Shapiro L, Kwong P D, Jeruzalmi D, des Georges A, Potter C S and Carragher B 2017 bioRxiv
[36] Raffaini G and Ganazzoli F 2010 Langmuir 26 5679
[37] Yu G, Li K and Jiang W 2016 Methods
[38] Kelly D F, Dukovski D and Walz T 2010 J. Mol. Biol. 400 675
[39] Quinn P J and Dawson R M 1970 Biochem. J. 116 671
[40] Razinkov I, Dandey V, Wei H, Zhang Z, Melnekoff D, Rice W J, Wigge C, Potter C S and Carragher B 2016 J. Struct. Biol. 195 190
[41] Arnold S A, Albiez S, Bieri A, Syntychaki A, Adaixo R, McLeod R A, Goldie K N, Stahlberg H and Braun T 2017 J. Struct. Biol. 197 220
[42] Noble A J, Wei H, Dandey V P, Zhang Z, Potter C S and Carragher B 2018 bioRxiv
[43] Scheres S H, Gao H, Valle M, Herman G T, Eggermont P P, Frank J and Carazo J M 2007 Nat. Methods 4 27
[44] Zhang K, Foster H E, Rondelet A, Lacey S E, Bahi-Buisson N, Bird A W and Carter A P 2017 Cell 169 1303
[45] Fischer N, Konevega A L, Wintermeyer W, Rodnina M V and Stark H 2010 Nature 466 329
[46] Van Heel M and Frank J 1981 Ultramicroscopy 6 187
[47] van Heel M 1984 Ultramicroscopy 13 165
[48] Sigworth F J, Doerschuk P C, Carazo J M and Scheres S H 2010 Methods Enzymol 482 263
[49] Scheres S H 2012 J. Mol. Biol. 415 406
[50] Voorhees R M, Fernandez I S, Scheres S H and Hegde R S 2014 Cell 157 1632
[51] Shan H, Wang Z, Zhang F, Xiong Y, Yin C C and Sun F 2016 Protein & cell 7 46
[52] Bai X C, Rajendra E, Yang G, Shi Y and Scheres S H 2015 ELife 4
[53] Nakane T, Kimanius D, Lindahl E and Scheres S H W 2018 bioRxiv
[54] Zhou Q, Zhou N and Wang H W 2017 Biophys. Rep. 3 43
[55] Jin Q, Sorzano C O, de la Rosa-Trevin J M, Bilbao-Castro J R, Nunez-Ramirez R, Llorca O, Tama F and Jonic S 2014 Structure 22 496
[56] Frank J and Ourmazd A 2016 Methods
[57] Sorzano C O, de la Rosa-Trevin J M, Tama F and Jonic S 2014 J. Struct. Biol. 188 134
[58] Sanchez Sorzano C O, Alvarez-Cabrera A L, Kazemi M, Carazo J M and Jonic S 2016 Biophys. J. 110 1753
[59] Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H and Cramer P 2017 Nature 551 204
[60] Schwander P, Fung R and Ourmazd A 2014 Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 20130567
[61] Schwander P, Fung R, G. N. Phillips J and Ourmazd A 2010 New J. Phys. 12 035007
[62] Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao H Y, Pallesen J, Sharma G, Stupina V A, Simon A E, Dinman J D, Frank J and Ourmazd A 2014 Proc. Natl. Acad. Sci. USA 111 17492
[63] Jonic S 2017 Curr. Opin. Struct. Biol. 43 114
[64] Yan R, Edwards T J, Pankratz L M, Kuhn R J, Lanman J K, Liu J and Jiang W 2015 J. Struct. Biol. 192 287
[65] DeRosier D J 2000 Ultramicroscopy 81 83
[66] Zhang K 2016 J. Struct. Biol. 93 1
[67] Wolf M, DeRosier D J and Grigorieff N 2006 Ultramicroscopy 106 376
[68] Leong P A, Yu X, Zhou Z H and Jensen G J 2010 Methods in Enzymology, ed. Grant J J (Academic Press) pp. 369-380
[69] Tan Y Z, Aiyer S, Mietzsch M, Hull J A, McKenna R, Grieger J, Samulski R J, Baker T S, Agbandje-McKenna M and Lyumkis D 2018 bioRxiv
[70] Zhu D, Wang X, Fang Q, Van Etten J L, Rossmann M G, Rao Z and Zhang X 2018 Nat. Commun. 9 1552
[71] Yuan S, Wang J, Zhu D, Wang N, Gao Q, Chen W, Tang H, Wang J, Zhang X, Liu H, Rao Z and Wang X 2018 Science 360
[72] Downing K H and Glaeser R M 2017 Ultramicroscopy 184 94
[73] Brink J, Sherman M B, Berriman J and Chiu W 1998 Ultramicroscopy 72 41
[74] Brilot A F, Chen J Z, Cheng A, Pan J, Harrison S C, Potter C S, Carragher B, Henderson R and Grigorieff N 2012 J. Struct. Biol. 177 630
[75] Russo C J and Henderson R 2018 Ultramicroscopy 187 56
[76] Grant T and Grigorieff N 2015 ELife 4 e06980
[77] Leapman R D and Sun S 1995 Ultramicroscopy 59 71
[78] Chen J Z, Sachse C, Xu C, Mielke T, Spahn C M and Grigorieff N 2008 J. Struct. Biol. 161 92
[79] Cheng N, Wu W, Watts N R and Steven A C 2014 J. Struct. Biol. 185 250
[80] McMullan G, Vinothkumar K R and Henderson R 2015 Ultramicroscopy 158 26
[81] Jin L, Milazzo A C, Kleinfelder S, Li S, Leblanc P, Duttweiler F, Bouwer J C, Peltier S T, Ellisman M H and Xuong N H 2008 J. Struct. Biol. 161 352
[82] McMullan G, Faruqi A R, Clare D and Henderson R 2014 Ultramicroscopy 147 156
[83] Zheng S Q, Palovcak E, Armache J P, Verba K A, Cheng Y and Agard D A 2017 Nat. Methods 14 331
[84] Bullough P and Henderson R 1987 Ultramicroscopy 21 223
[85] Downing K H and Glaeser R M 1986 Ultramicroscopy 20 269
[86] Berriman J A and Rosenthal P B 2012 Ultramicroscopy 116 106
[87] Russo C J and Passmore L A 2014 Nat. Methods
[88] Russo C J and Passmore L A 2016 J. Struct. Biol. 193 33
[89] Yoshioka C, Carragher B and Potter C S 2010 Microsc. Microanal. 16 43
[90] des Georges A, Clarke O B, Zalk R, Yuan Q, Condon K J, Grassucci R A, Hendrickson W A, Marks A R and Frank J 2016 Cell 167 145
[91] Okamoto H 2012 Phys. Rev. A 85 043810
[92] Martin-Garcia J M, Conrad C E, Coe J, Roy-Chowdhury S and Fromme P 2016 Arch. Biochem. Biophys. 602 32
[93] Glaeser R M and Taylor K A 1978 J. Microscopy 112 127
[94] Hendrickson W A 1976 J. Mol. Biol. 106 889
[95] Schnabl H 1980 Ultramicroscopy 5 147
[96] Zewail A H 2010 Science 328 187
[97] Shorokhov D and Zewail A H 2016 J. Chem. Phys. 144 080901
[98] Fu X, Chen B, Tang J, Hassan M T and Zewail A H 2017 Science 355 494
[99] Cao G, Sun S, Li Z, Tian H, Yang H and Li J 2015 Sci. Rep. 5 8404
[100] Fitzpatrick A W, Lorenz U J, Vanacore G M and Zewail A H 2013 J. Am. Chemi. Soci. 135 19123
[101] Fitzpatrick A W, Park S T and Zewail A H 2013 Proc. Natl. Acad. Sci. USA 110 10976
[102] Lorenz U J and Zewail A H 2013 Proc. Natl. Acad. Sci. USA 110 2822
[103] Henderson R 2015 Arch. Biochem. Biophys.
[1] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[2] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[3] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[4] Towards dynamic structure of biological complexes at atomic resolution by cryo-EM
Kai Zhang(张凯). Chin. Phys. B, 2018, 27(6): 066801.
[5] Computing methods for icosahedral and symmetry-mismatch reconstruction of viruses by cryo-electron microscopy
Bin Zhu(朱彬), Lingpeng Cheng(程凌鹏), Hongrong Liu(刘红荣). Chin. Phys. B, 2018, 27(5): 056802.
[6] Structural biology revolution led by technical breakthroughs in cryo-electron microscopy
Chang-Cheng Yin(尹长城). Chin. Phys. B, 2018, 27(5): 058703.
[7] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[8] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
[9] Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique
Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086201.
[10] Proton radiation effect on GaAs/AlGaAs core-shell ensemble nanowires photo-detector
Li-Ying Tan(谭丽英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086202.
[11] An investigation of ionizing radiation damage in different SiGe processes
Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷). Chin. Phys. B, 2017, 26(8): 088503.
[12] A review of research progress in air-to-water sound transmission
Zhao-Hui Peng(彭朝晖), Ling-Shan Zhang(张灵珊). Chin. Phys. B, 2016, 25(12): 124306.
[13] Effect of helium implantation on SiC and graphite
Guo Hong-Yan, Ge Chang-Chun, Xia Min, Guo Li-Ping, Chen Ji-Hong, Yan Qing-Zhi. Chin. Phys. B, 2015, 24(3): 037803.
[14] Krypton ion irradiation-induced amorphization and nano-crystal formation in pyrochlore Lu2Ti2O7 at room temperature
Xie Qiu-Rong, Zhang Jian, Yin Dong-Min, Guo Qi-Xun, Li Ning. Chin. Phys. B, 2015, 24(12): 126103.
[15] Irradiation effect of yttria-stabilized zirconia by high dose dual ion beam irradiation
Zhang Yan-Wen, Wang Xu, Liu Shi-Yi, Tang Mei-Xiong, Zhao Zi-Qiang, Zhang Peng, Wang Bao-Yi, Cao Xing-Zhong. Chin. Phys. B, 2014, 23(6): 066105.
No Suggested Reading articles found!