Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060301    DOI: 10.1088/1674-1056/27/6/060301
GENERAL Prev   Next  

Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems

Meng Qin(秦猛)1, Zhongzhou Ren(任中洲)2,3, Xin Zhang(张欣)2
1 Department of General Education, Army Engineering University of PLA, Nanjing 211101, China;
2 Department of Physics, Nanjing University, Nanjing 210093, China;
3 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence (SC) and square of quantum discord (SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.
Keywords:  XY model      quantum phase transitions      quantum correlation      monogamy relation  
Received:  02 February 2018      Revised:  11 March 2018      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  75.50.Gg (Ferrimagnetics)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20171397),the National Natural Science Foundation of China (Grant Nos.11535004,11375086,1175085,and 11120101005),the Foundation for Encouragement of College of Sciences (Grant No.LYLZJJ1616),and the Pre-research Foundation of Army Engineering University of PLA.
Corresponding Authors:  Meng Qin     E-mail:

Cite this article: 

Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣) Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems 2018 Chin. Phys. B 27 060301

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 44 777
[2] Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[3] Qin M, Zhang X and Ren Z Z 2016 Quantum Inf. Comput. 16 835
[4] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[5] Kumar A and Dhar H S 2016 Phys. Rev. A 93 062337
[6] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[7] Bai Y K, Zhang N, Ye M Y and Wang Z D 2013 Phys. Rev. A 88 012123
[8] Prabhu R, Pati A K, SenDe A and Sen U 2012 Phys. Rev. A 85 040102
[9] Liu S Y, Li B, Yang W L and Fan H 2013 Phys. Rev. A 87 062120
[10] Xu S, Song X K and Ye L 2014 Chin. Phys. B 23 010302
[11] Sachdev S 2014 Quantum Phase Transitions, 2nd edn. (Cambridge:Cambridge University Press)
[12] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[13] Song J L, Zhong M and Tong P Q 2017 Acta Phys. Sin. 66 180302 (in Chinese)
[14] Chen J L, Xue K and Ge M L 2008 Ann. Phys. 323 2614
[15] Gu S J, Lin H Q and Li Y Q 2003 Phys. Rev. A 68 042330
[16] Xi Z J, Lu X M, Sun Z and Li Y M 2011 J. Phys. B:At. Mol. Opt. Phys. 44 215501
[17] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[18] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[19] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[20] Huang Y C 2014 Phys. Rev. B 89 054410
[21] Verstraete F, Martin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 92 087201
[22] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304
[23] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346
[24] Jafari R, Kargarian M, Langari A and Siahatgar M 2008 Phys. Rev. B 78 214414
[25] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309
[26] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
[27] Yao Y, Li H W, Zhang C M, Yin Z Q, Chen W, Guo G C and Han Z F 2012 Phys. Rev. A 86 042102
[28] Xu Y L, Zhang X, Liu Z Q, Kong X M and Ren T Q 2014 Eur. Phys. J. B 87 132
[29] Qin M, Ren Z Z and Zhang X 2016 Sci. Rep. 6 26042
[30] Liu C C, Wang D, Sun W Y and Ye L 2017 Laser Phys. Lett. 14 105202
[31] Xu Y L, Kong X M, Liu Z Q and Wang C Y 2016 Physica A 446 217
[32] Usman M, Ilyas A and Khan K 2015 Phys. Rev. A 92 032327
[33] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[34] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[35] Yu S, Zhang C, Chen Q and Oh C H arXiv:1102.1301.
[36] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[37] Huang Y C 2013 Phys. Rev. A 88 014302
[38] Luo S L and Fu S S 2011 Phys. Rev. Lett. 106 120401
[39] Hu M L and Fan H 2015 New J. Phys. 17 033004
[40] Dakić B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[41] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340
[42] Horodecki R, Horodecki P and Horodecki M 1996 Phys. Lett. A 210 223
[43] Xu Y L, Kong X M, Liu Z Q and Yin C C 2017 Phys. Rev. A 95 042327
[44] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[45] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[46] Song W, Bai Y K, Yang M, Yang M and Cao Z L 2016 Phys. Rev. A 93 022306
[47] Luo Y, Tian T, Shao L H and Li Y M 2016 Phys. Rev. A 93 062340
[48] Cornelio M F 2013 Phys. Rev. A 87 032330
[49] Shi X 2017 Chin. Phys. B 26 120303
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[3] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[4] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[5] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[6] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[7] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[10] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[11] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[12] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[13] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[14] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
[15] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
No Suggested Reading articles found!