Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057501    DOI: 10.1088/1674-1056/27/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy

Zi-Zhao Gong(弓子召)1,2, Wei Zhang(张伟)2,3, Wei He(何为)2, Xiang-Qun Zhang(张向群)2, Yong Liu(刘永)1, Zhao-Hua Cheng(成昭华)2,3
1 State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
2 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  For static magnetic properties of the Co/Ni bilayers, macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by the object oriented micromagnetic framework (OOMMF). It is found that when the bilayer systems are fully decoupled, the magnetizations of the two phases reverse separately. The coercivity of the bilayers decreases to a valley value sharply with increasing interfacial exchange coupling and then rises slowly to a platform. On the other hand, we have carried out an atomistic simulation for the laser-induced ultrafast demagnetization of the Co/Ni bilayer. A larger damping constant leads to a faster demagnetization as well as a larger degree of demagnetization, which is consistent with the first-principle theoretical results. For the magnetization recovery process, the damping constant has different influences on the recovery time with various peak electron temperatures, which is ignored in previous atomistic simulations as well as the Landau-Liftshit-Bloch (LLB) micromagnetic calculations. Furthermore, as the interfacial exchange coupling increases, the ultrafast demagnetization curves for Co and Ni become coincident, which is a demonstration for the transition from two-phase phenomenon to single-phase phenomenon.
Keywords:  micromagnetic simulation      interfacial effect      hysteresis loops      ultrafast demagnetization  
Received:  04 February 2018      Revised:  13 March 2018      Published:  05 May 2018
PACS:  75.60.Jk (Magnetization reversal mechanisms)  
  75.78.-n (Magnetization dynamics)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos.2015CB921403 and 2016YFA0300701),the National Natural Science Foundation of China (Grant Nos.91622126,51427801,and 51671212),and the Natural Science Foundation of Hebei Province,China (Grant No.A2015203021).
Corresponding Authors:  Yong Liu, Zhao-Hua Cheng     E-mail:  ycliu@ysu.edu.cn;zhcheng@iphy.ac.cn

Cite this article: 

Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华) Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy 2018 Chin. Phys. B 27 057501

[1] Daalderop G H O, Kelly P J and Broeder F J A 1992 Phys. Rev. Lett. 68 682
[2] Ju H L, Li B H, Wu Z F, Zhang F, Liu S and Yu G H 2015 Acta Phys. Sin. 64 097501(in Chinese)
[3] Yang E, Sokalski V M, Moneck M T, Bromberg D M and Zhu J G 2013 J. Appl. Phys. 113 17C116
[4] You L, Sousa R C, Bandiera S, Rodmacq B and Dieny B 2012 Appl. Phys. Lett. 100 172411
[5] Kato T, Matsumoto Y, Okamoto S, Kikuchi N, Kitakami O, Nishizawa N, Tsunashima S and Iwata S 2011 IEEE. Trans. Magn. 47 10
[6] Song H S, Lee K D, Sohn J W, Yang S H, Parkin S S P, You C Y and Shin S C 2013 Appl. Phys. Lett. 102 102401
[7] Song H S, Lee K D, Sohn J W, Yang S H, Parkin S S P, You C Y and Shin S C 2013 Appl. Phys. Lett. 103 022406
[8] Mizukami S, Zhang X, Kubota T, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Appl. Phys. Express 4 013005
[9] Pal S, Polley D, Mitra R K and Barman A 2015 Solid State Commu. 221 50
[10] Donahue M J and Porter D G 1999 OOMMF user's guide, version 1.0. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD
[11] Zhang W, Zhao G P, Yuan X H and Ye L N 2012 J. Magn. Magn. Mater. 324 4231
[12] Brown W F 1945 Rev. Mod. Phys. 17 15
[13] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A and Chantrell R W 2014 J. Phys.:Condens. Matter 26 103202
[14] Sang C X, Zhao G P, Xia W X, Wan X L, Morvan F J, Zhang X C, Xie L H, Zhang J, Du J, Yan A R and Liu P 2016 Chin. Phys. B 25 037501
[15] Deng Y, Zhao G P, Chen L, Zhang H W and Zhou X L 2011 J. Magn. Magn. Mater. 323 535
[16] Deng Y, Zhao G P and Bo N 2011 Acta Phys. Sin. 60 037502(in Chinese)
[17] Shan Z S, Liu J P, Chakka V M, Zeng H and Jiang J S 2002 IEEE. Tran. Magn. 385 2907
[18] Evans R F L, Ostler T A, Chantrell R W, Radu I and Rasing T 2014 Appl. Phys. Lett. 104 082410
[19] Garcia-Palacios J L and Lazaro F J 1998 Phys. Rev. B. 58 14937
[20] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250
[21] Koopmans B, Aeschlimann M, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T and Cinchetti M 2010 Nat. Mater. 9 259
[22] Zhang G P and Hübner W 2000 Phys. Rev. Lett. 85 3025
[23] Stohr J and Siegmann H C 2012 Magnetism:From Fundamentals to Nanoscale Dynamics 586
[24] Atxitia U and Chubykalo-Fesenko O 2011 Phys. Rev. B 84 144414
[25] Atxitia U and Chubykalo-Fesenko O 2010 Phys. Rev. B 81 174401
[26] Kazantseva N, Nowak U, Chantrell R W, Hohlfeld J and Rebei A 2008 Europhys. Lett. 81 27004
[27] Kazantseva1N, Hinzke1D, Nowak U and Chubykalo-Fesenko O 2007 Phys. Stat. Sol. (b) 244 12
[1] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[2] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[3] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[4] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[5] Dynamic nucleation of domain-chains in magnetic nanotracks
Xiangjun Jin(金香君), Yong Li(李勇), Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127504.
[6] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[7] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[8] Effects of dipolar interactions on magnetic properties of Co nanowire arrays
Hong-Jian Li(李洪健), MingYue(岳明), Qiong Wu(吴琼), Yi Peng(彭懿), Yu-Qing Li(李玉卿), Wei-Qiang Liu(刘卫强), Dong-Tao Zhang(张东涛), Jiu-Xing Zhang(张久兴). Chin. Phys. B, 2017, 26(11): 117503.
[9] Faster vortex core switching with lower current density using three-nanocontact spin-polarized currents in a confined structure
Hua-Nan Li(李化南), Zhong Hua(华中), Dong-Fei Li(李东飞). Chin. Phys. B, 2017, 26(1): 017502.
[10] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[11] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu, Li Zhi-Xiong, Wang Xi-Guang, Nie Yao-Zhuang, Guo Guang-Hua. Chin. Phys. B, 2015, 24(9): 097503.
[12] Nonmonotonic effects of perpendicular magnetic anisotropy on current-driven vortex wall motions in magnetic nanostripes
Su Yuan-Chang, Lei Hai-Yang, Hu Jing-Guo. Chin. Phys. B, 2015, 24(9): 097506.
[13] Investigation of L10 FePt-based soft/hard composite bit-patterned media by micromagnetic simulation
Wang Ying, Wei Dan, Cao Jiang-Wei, Wei Fu-Lin. Chin. Phys. B, 2015, 24(6): 068504.
[14] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu, Zhai Liang-Jun, Wang Huai-Yu. Chin. Phys. B, 2015, 24(3): 037510.
[15] Micromagnetic simulation of Sm-Co/α-Fe/Sm-Co trilayers with various angles between easy axes and the film plane
Zhang Xi-Chao, Zhao Guo-Ping, Xia Jing, Yue Ming, Yuan Xin-Hong, Xie Lin-Hua. Chin. Phys. B, 2014, 23(9): 097504.
No Suggested Reading articles found!