Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047502    DOI: 10.1088/1674-1056/27/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM

Ke Pei(裴科)1,2,3, Wei-Xing Xia(夏卫星)2,3, Bao-Min Wang(王保敏)2,3, Xing-Cheng Wen(文兴成)2,3, Ping Sheng(盛萍)2,3, Jia-Ping Liu(刘家平)2,3,4, Xin-Cai Liu(刘新才)1, Run-Wei Li(李润伟)2,3
1. The school of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
2. CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China;
3. Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4. Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
Abstract  

Exchange bias effect has been widely employed for various magnetic devices. The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically, which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer. However, mapping the distribution of pinned spins is challenging. In this work, we directly image the reverse domain nucleation and domain wall movement process in the exchange biased CoFeB/IrMn bilayers by Lorentz transmission electron microscopy. From the in-situ experiments, we obtain the distribution mapping of the pinning strength, showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer. Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.

Keywords:  exchange bias      magnetization reversal process      Lorentz transmission electron microscopy      pinning effect distribution  
Received:  12 October 2017      Revised:  01 January 2018      Published:  05 April 2018
PACS:  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  68.37.Lp (Transmission electron microscopy (TEM))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0201102), the National Natural Science Foundation of China (Grant No. 51571208), the Instrument Developing Project of Chinese Academy of Sciences (Grant No. YZ201536), the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08), the K C Wong Education Foundation (Grant No. rczx0800), and the K C Wong Magna Fund in Ningbo University.

Corresponding Authors:  Wei-Xing Xia, Wei-Xing Xia     E-mail:  xiawxing@nimte.ac.cn;liuxincai@nbu.edu.cn

Cite this article: 

Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟) Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM 2018 Chin. Phys. B 27 047502

[1] Nogués J and Schuller I K 1999 J. Magn. Magn. Mager. 192 203
[2] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[3] Meiklejohn W H and Bean C P 1956 Phys. Rev. 105 904
[4] Mauri D, Siegmann H C, Bagus P S and Kay E 1987 J. Appl. Phys. 62 3047
[5] Malozemoff A P 1987 Phys. Rev. B 35 3679
[6] Koon N C 1997 Phys. Rev. Lett. 78 4865
[7] Stöhr J, Scholl A, Regan T J, Anders S, Lüning J, Scheinfein M R, Padmore H A and White R L 1999 Phys. Rev. Lett. 83 1862
[8] Wu J, Park J S, Arenholz E, Liberati M, Scholl A, Wu Y Z, Hwang C and Qiu Z Q 2010 Phys. Rev. Lett. 104 217204
[9] Nikitenko V I, Gornakov V S, Shapiro A J, Shull R D, Liu K, Zhou S M and Chien C L 2000 Phys. Rev. Lett. 84 765
[10] Hwang D G, Kim J K, Kim S W, Lee S S, Koo H, Chung S H, Dreyer M and Gomez R D 2003 J. Magn. Magn. Mater. 260 400
[11] Lee H S, Ryu K S, Jeon K R and Shin S C 2010 J. Appl. Phys. 107 09D707
[12] Liu J, Sepehri-Amin H, Ohkubo T, Hioki K, Hattori A, Schrefl T and Hono K 2013 Acta Mater. 61 5387
[13] Akase Z, Aizawa S, Shindo D, Sharma P and Makino A 2015 J. Magn. Magn. Mater. 375 10
[14] Rodríguez L A, Magén C, Snoeck E, Serrano-Ramón L, Gatel C, Córdoba R, Martínez-Vecino E, Torres L, De Teresa J M and Ibarra M R 2013 Appl. Phys. Lett. 102 022418
[15] Yu X Z, DeGrave J P, Hara Y, Hara T, Jin S and Tokura Y 2013 Nano Lett. 13 3755
[16] Masseboeuf A, Gatel C, Bayle-Guillemaud P, Lamy Y and Viala B 2009 J. Magn. Magn. Mater. 321 3080
[17] Kovás A, Kohn A, Dean J, Schrefl T, Zeltser A and Carey M J 2009 IEEE Trans. Magn. 45 3873
[18] O'Shea K J, Rode K, Kurt H, McGrouther D and MacLaren D A 2015 J. Phys. D:Appl. Phys. 48 055001
[19] Harte K J 1968 J. Appl. Phys. 39 1503
[20] Hubert A and Schäfer R 2009 Magnetic domains (New York:Springer)
[21] Aley N P, Vallejo-Fernandez G, Kroeher R, Lafferty B, Agnew J, Lu Y and O'Grady K 2008 IEEE Trans. Magn. 44 2820
[22] Wang Y, Wei D and Gao K Z 2011 IEEE Trans. Magn. 47 2720
[23] Malozemoff A P 1988 Phys. Rev. B 37 7673
[1] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[2] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[3] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[4] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
[5] Magnetic properties of misch-metal partially substituted Nd-Fe-B magnets sintered by dual alloy method
Jie-Fu Xiong(熊杰夫), Rong-Xiang Shang(商荣翔), Yan-Li Liu(刘艳丽), Xin Zhao(赵鑫), Wen-Liang Zuo(左文亮), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(7): 077504.
[6] Magnetoresistance and exchange bias in high Mn content melt-spun Mn46Ni42Sn11Sb1 alloy ribbon
Qingxue Huang(黄庆学), Fenghua Chen(陈峰华), Mingang Zhang(张敏刚), Xiaohong Xu(许小红). Chin. Phys. B, 2016, 25(5): 057305.
[7] Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect
Miao-Ling Zhang(张苗玲), Jun Ye(叶军), Rui Liu(刘锐), Shu Mi(米菽), Yong Xie(谢勇), Hao-Liang Liu(刘郝亮), Chris Van Haesendonck, Zi-Yu Chen(陈子瑜). Chin. Phys. B, 2016, 25(4): 047503.
[8] Size-dependent exchange bias in single phase Mn3O4 nanoparticles
Song-Wei Wang(王松伟), Xin Zhang(张鑫), Rong Yao(姚蓉), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2016, 25(11): 117502.
[9] Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers
Zhang Wen, Zhai Ya, Lu Mu, You Biao, Zhai Hong-Ru, Caroline G Morgan. Chin. Phys. B, 2015, 24(4): 047502.
[10] High coercivity in large exchange-bias Co/CoO-MgO nano-granular films
Ge Chuan-Nan, Wan Xian-Gang, Eric Pellegrin, Hu Zhi-Wei, Wen-I Liang, Michael Bruns, Zou Wen-Qin, Du You-Wei. Chin. Phys. B, 2015, 24(3): 034501.
[11] Multiferroic properties and exchange bias in Bi1-xSrxFeO3 (x=0-0.6) ceramics
Ma Zheng-Zheng, Li Jian-Qing, Chen Zi-Peng, Tian Zhao-Ming, Hu Xiao-Jun, Huang Hai-Jun. Chin. Phys. B, 2014, 23(9): 097505.
[12] Types of the jump phenomenon in the angular dependence of the noncollinear exchange bias
Yang Hong-Ping, Bai Yu-Hao. Chin. Phys. B, 2014, 23(6): 067503.
[13] Exchange bias in ferromagnet/antiferromagnet bilayers
Shi Zhong, Du Jun, Zhou Shi-Ming. Chin. Phys. B, 2014, 23(2): 027503.
[14] Multiple sign reversals of the exchange bias field in polycrystalline SmCr0.9Fe0.1O3
Fang Yong, Yan Shi-Ming, Gong Yuan-Yuan, Zhu Wei-Li, Cao Qing-Qi, Wang Dun-Hui, Du You-Wei. Chin. Phys. B, 2014, 23(12): 127502.
[15] Asymmetric exchange bias training effect in spin glass (FeAu)/FeNi bilayers
Rui Wen-Bin, He Mao-Cheng, You Biao, Shi Zhong, Zhou Shi-Ming, Xiao Ming-Wen, Gao Yuan, Zhang Wei, Sun Li, Du Jun. Chin. Phys. B, 2014, 23(10): 107502.
No Suggested Reading articles found!