Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 045202    DOI: 10.1088/1674-1056/27/4/045202

Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas

Chan Xue(薛婵)1, Fei Gao(高飞)1, Yong-Xin Liu(刘永新)1, Jia Liu(刘佳)2, You-Nian Wang(王友年)1
1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2. Shanghai Institute of Space Propulsion, Shanghai 201112, China

A retarding field energy analyzer (RFEA) is used to measure the time-averaged ion energy distributions (IEDs) on the substrate in both continuous wave (CW) and synchronous pulse modulated radio-frequency (RF) inductively coupled Ar plasmas (ICPs). The effects of the phase shift θ between the RF bias voltage and the RF source on the IED is investigated under various discharge conditions. It is found that as θ increases from 0 to π, the IED moves towards the low-energy side, and its energy width becomes narrower. In order to figure out the physical mechanism, the voltage waveforms on the substrate are also measured. The results show that as θ increases from 0 to π, the amplitude of the voltage waveform decreases and, meanwhile, the average sheath potential decreases as well. Specifically, the potential drop in the sheath on the substrate exhibits a maximum value at the same phase (i.e., θ=0) and a minimum value at the opposite phase (i.e., θ=π). Therefore, when ions traverse across the sheath region above the substrate, they obtain less energies at lower sheath potential drop, leading to lower ion energy. Besides, as θ increases from π to 2π, the IEDs and their energy widths change reversely.

Keywords:  ion energy distribution      phase shift      synchronous pulse modulated      inductively coupled plasmas  
Received:  03 December 2017      Revised:  12 January 2018      Published:  05 April 2018
PACS:  52.80.Yr (Discharges for spectral sources)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.40.Kh (Plasma sheaths)  

Project supported by the Important National Science and Technology Specific Project, China (Grant No. 2011ZX02403-001), the National Natural Science Foundation of China (Grand No. 11675039), and the Fundamental Research Funds for the Central Universities, China (Grand No. DUT16LK06).

Corresponding Authors:  Fei Gao, You-Nian Wang     E-mail:;

Cite this article: 

Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年) Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas 2018 Chin. Phys. B 27 045202

[1] Keller J H, Forster J C and Barnes M S 1993 J. Vacuum Sci. Technol. A 11 2487
[2] Schulze J, Schüngel E and Czarnetzki U 2012 Appl. Phys. Lett. 100 024102
[3] Edelberg E A and Aydil E S 1999 J. Appl. Phys. 86 4799
[4] Wegner T, Küllig C and Meichsner J 2017 Plasma Sources Science and Technology 26 025006
[5] Banna S, Agarwal A, Cunge G, Darnon M, Pargon E and Joubert O 2012 J. Vacuum Sci. Technol. A 30 040801
[6] Gudmundsson J T 1999 Plasma Sources Science and Technology 8 58
[7] Lieberman M A and Gottscho R A 1994 Physics of Thin Films (New York:H. Francombe Maurice & L. Vossen John) pp. 1-119
[8] Wild C and Koidl P 1991 J. Appl. Phys. 69 2909
[9] Kortshagen U and Zethoff M 1995 Plasma Sources Science and Technology 4 541
[10] Agarwal A, Stout P J, Banna S, Rauf S and Collins K 2011 J. Vacuum Sci. Technol. A 29 011017
[11] Agarwal A, Stout P J, Banna S, Rauf S, Tokashiki K, Lee J Y and Collins K 2009 J. Appl. Phys. 106 103305
[12] Banna S, Agarwal A, Tokashiki K, Hong C, Rauf S, Todorow V, Ramaswamy K, Collins K, Stout P, Jeong-Yun L, Junho Y, Kyoungsub S, Sang-Jun C, Han-Soo C, Hyun-Joong K, Changhun L and Lymberopoulos D 2009 IEEE Trans. Plasma Sci. 37 1730
[13] Cunge G, Vempaire D and Sadeghi N 2010 Appl. Phys. Lett. 96 131501
[14] Ono K and Tuda M 2000 Thin Solid Films 374 208
[15] Xue C, Wen D Q, Liu W, Zhang Y R, Gao F and Wang Y N 2017 J. Vacuum Sci. Technol. A 35 021301
[16] Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Science and Technology 24 025035
[17] Gao F, Zhao S X, Li X S and Wang Y N 2010 Phys. Plasmas 17 103507
[18] Gao F, Zhang Y R, Zhao S X, Li X C and Wang Y N 2014 Chin. Phys. B 23 115202
[19] Gao F, W Liu, Zhao S X, Zhang Y R, Sun C S and Wang Y N 2013 Chin. Phys. B 22 115205
[20] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[21] Bruneau B, Lafleur T, Booth J P and Johnson E 2016 Plasma Sources Sci. Technol. 25 025006
[22] Kawamura E, Vahedi V, Lieberman M A and Birdsall C K 1999 Plasma Sources Sci. Technol. 8 R45
[1] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), Biao Li(李彪). Chin. Phys. B, 2020, 29(10): 100501.
[2] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), Bi-Jun Xu(徐弼军). Chin. Phys. B, 2020, 29(10): 104101.
[3] Single-shot phase-shifting digital holography with a photon-sieve-filtering telescope
You Li(李优), Yao-Cun Li(李垚村), Jun-Yong Zhang(张军勇), Yan-Li Zhang(张艳丽), Xue-Mei Li(李雪梅). Chin. Phys. B, 2019, 28(8): 084205.
[4] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[5] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[6] Performance analysis of quantum access network using code division multiple access model
Linxi Hu(胡林曦), Can Yang(杨灿), Guangqiang He(何广强). Chin. Phys. B, 2017, 26(6): 060304.
[7] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[8] Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy
Qin-Bin Huang(黄秦斌), Xue-Mei Xu(许雪梅), Chen-Jing Li(李晨静), Yi-Peng Ding(丁一鹏), Can Cao(曹粲), Lin-Zi Yin(尹林子), Jia-Feng Ding(丁家峰). Chin. Phys. B, 2016, 25(11): 114202.
[9] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[10] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing, Zhao Shu-Xia, Gao Fei, Zhang Yu-Ru, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2015, 24(11): 115201.
[11] Fluctuations of optical phase of diffracted light for Raman-Nath diffraction in acousto-optic effect
Weng Cun-Cheng, Zhang Xiao-Man. Chin. Phys. B, 2015, 24(1): 014210.
[12] Large phase shift of spatial soliton in lead glass by cross-phase modulation in pump-signal geometry
Shou Qian, Liu Dong-Wen, Zhang Xiang, Hu Wei, Guo Qi. Chin. Phys. B, 2014, 23(8): 084204.
[13] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei, Zhang Yu-Ru, Zhao Shu-Xia, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2014, 23(11): 115202.
[14] Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays
Li Jiang-Yan, Qiu Kang-Sheng, Ma Hai-Qiang. Chin. Phys. B, 2014, 23(10): 106804.
[15] Theory study on a photonic-assisted radio frequency phase shifter with direct current voltage control
Li Jing, Ning Ti-Gang, Pei Li, Jian Wei, You Hai-Dong, Wen Xiao-Dong, Chen Hong-Yao, Zhang Chan, Zheng Jing-Jing. Chin. Phys. B, 2014, 23(10): 104216.
No Suggested Reading articles found!