Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 043103    DOI: 10.1088/1674-1056/27/4/043103

Density functional theory study of structural stability for gas hydrate

Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤)
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Using the first-principles method based on the density functional theory (DFT), the structures and electronic properties of different gas hydrates (CO2, CO, CH4, and H2) are investigated within the generalized gradient approximation. The structural stability of methane hydrate is studied in this paper. The results show that the carbon dioxide hydrate is more stable than the other three gas hydrates and its binding energy is -2.36 eV, and that the hydrogen hydrate is less stable and the binding energy is -0.36 eV. Water cages experience repulsion from inner gas molecules, which makes the hydrate structure more stable. Comparing the electronic properties of two kinds of water cages, the energy region of the hydrate with methane is low and the peak is close to the left, indicating that the existence of methane increases the stability of the hydrate structure. Comparing the methane molecule in water cages and a single methane molecule, the energy of electron distribution area of the former is low, showing that the filling of methane enhances the stability of hydrate structure.

Keywords:  first principles      gas hydrate      binding energy      stability  
Received:  06 December 2017      Revised:  23 January 2018      Published:  05 April 2018
PACS: (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0304008).

Corresponding Authors:  Yi-Long Qiu     E-mail:

Cite this article: 

Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤) Density functional theory study of structural stability for gas hydrate 2018 Chin. Phys. B 27 043103

[1] Zhao Y S, Xu H W and Yu X H 2009 Physics 38 92(in Chinese)
[2] Guo P, Pan Y K, Li L L and Tang B 2017 Chin. Phys. B 26 073101
[3] Du B X, Chen J M, Qian W B and Wang Y 2010 Nat. Gas Explor. Dev. 33 26
[4] Yan K F, Li X S, Chen Z Y, Li G and Li Z B 2007 Acta Phys. Sin. 56 6727(in Chinese)
[5] Erfanniya H and Izadkhah S 2016 J. Pet. Sci. Technol. 34 1964
[6] Chaka A M, Felmy A R and Qafoku O 2016 Chem. Geol. 434 1
[7] Duan X L, Ren H, Gao G H, Xu J L and Qiu X Q 2014 Petro. Technol. 43 657
[8] Tang L, Shi R, Su Y and Zhao J 2015 J. Phys. Chem. A 119 10971
[9] Song J J, Li Y P and Yang Z Y 2012 J. B. Univ. Chem. Technol. 39 36
[10] Cao X X, Su Y, Zhao J J, Liu C L and Zhou P W 2014 Acta Phys. Sin. 63 1437(in Chinese)
[11] Xu L Z 2015 "Simulation research and application study on microscopic elastic properties of natural gas hydrate", MS dissertation (Chengdu:the Southwest Petroleum University) (in Chinese)
[12] Hohenberg P and Kohn W 1964 Phys. Rev 136 B864
[13] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[14] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[15] McMullan R K and Jeffrey G A 1965 J. Chem. Phys. 42 8
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Goldfarb D 1970 Math. Comput. 24 23
[1] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[2] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[3] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[4] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[5] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[6] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[7] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[8] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[9] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[10] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[11] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[12] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[13] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[14] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[15] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
No Suggested Reading articles found!