Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040504    DOI: 10.1088/1674-1056/27/4/040504
GENERAL Prev   Next  

Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies

Jin-Huan Wang(王金环)1, Yu-Ling Xu(许玉玲)1, Jian Zhang(张建)1, De-Dong Yang(杨德东)2
1. School of Science, Hebei Provincial Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin 300401, China;
2. School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy. Different from the previous works, to achieve the desired time-varying formation, a distributed control scheme is designed in an event-triggered way, in which for each agent the controller is triggered only at its own event times. The interaction topology among agents is assumed to be switching. The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem. Moreover, the Zeno behavior of triggering time sequences can be excluded for each agent. Finally, a simulation example is presented to illustrate the effectiveness of the theoretical results.
Keywords:  multi-agent systems      time-varying formation      switching topologies      event-triggered control  
Received:  09 October 2017      Revised:  20 January 2018      Published:  05 April 2018
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11701138) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2017202009 and F2018202075).
Corresponding Authors:  Jin-Huan Wang     E-mail:

Cite this article: 

Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东) Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies 2018 Chin. Phys. B 27 040504

[1] Bai H and Wen J T 2010 IEEE Trans. Robotics. 26 742
[2] Cao F J, Ling Z H, Yuan Y F and Gao C 2014 Chin. Phys. B 23 070509
[3] Yan W S, Fang X P and Li J B 2014 IEEE Commun. Lett. 18 1579
[4] Zuo Y Z, Cichella V, Xu M and Hovakimyan N 2015 J. Frankl. Inst. 352 3858
[5] Chen L M, Li C J, Sun Y C and Ma G F 2017 Chin. Phys. B 26 068703
[6] Ge M F, Guan Z H, Yang C, Li T and Wang Y W 2016 J. Frankl. Inst. 335 2290
[7] Ma C Q and Zhang J F 2012 J. Syst. Sci. Complex 25 13
[8] Olfati-Saber R, Fax J A and Murray M 2007 Proc. IEEE 95 215
[9] Dong X W, Yu B C, Shi Z Y and Zhong Y S 2015 IEEE Trans. Control Syst. Technol. 23 340
[10] Dong X W, Shi Z Y, Lu G and Zhong Y S 2014 IET Control Theory Appl. 8 2162
[11] Liu W, Zhou S L, Qi Y H and Yan S 2015 Control Theory and Application 32 1422
[12] Wang R, Dong X W, Li Q D and Zhang R 2016 J. Frankl. Inst. 335 2290
[13] Dong X W, Xi J X, Lu G and Zhong Y S 2014 IEEE Trans. Contr. Network Systems 1 232.
[14] Qiu Z R, Liu S and Xie L H 2016 Automatica 68 209
[15] Cheng L, Wang Y P, Hou Z G and Tan M 2016 IEEE Trans. Auto. Contr. 61 3586
[16] Ai X D, Song S J and You K Y 2016 Automatica 68 329
[17] Li Z K, Chen Z Q and Ding Z T 2016 Automatica 68 179
[18] Zhang X, Wang J H, Yang D D and Xu Y 2017 Chin. Phys. B 26 070501
[19] Li Z K, Duan Z S, Ren W and Feng G 2015 Inter. J. Robust and Nonlinear Control 25 2101
[20] Li Z K, Ren W, Liu X D and Xie L H 2013 Automatica 49 1986
[21] Dong X W and Hu G Q 2016 Automatica 73 47
[22] Mawwary M 2015 Automatica 54 374
[23] Oh K, Park M and Ahn H 2015 Automatica 53 424
[24] Yoo S and Kim T 2015 Automatica 54 100
[25] Cao J, Wu Z H and Peng L 2016 Chin. Phys. B 25 058902
[26] Hu W F, Liu L and Feng G 2016 IEEE Trans. Cybernetics 46 148
[27] Zhang H, Feng G, Yan H C, and Chen Q J 2014 IEEE Trans. Industrial Electronics 61 4485
[28] Yang R H, Zhang H and Yan H C 2017 Acta Automatica Sinica 43 472
[29] Zhang W B, Yang T, Liu Y R and Kurths J 2017 IEEE Trans. Circuits and Systems I:Regular Papers 64 619
[30] Hu J, Chen G, and Li H X 2011 Kybernetika 47 630
[31] Tang T, Hiu Z X and Chen Z Q 2011 Chinese Control Conference 4783
[32] Ni W, Zhao P, Wang X L, and Wang J H 2015 Asian J. Contr 17 1196
[33] Liu W, Zhou S L, Qi Y H and Wu X Z 2016 Neurocomputing 173 1322
[34] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge:Cambridge University Press)
[1] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[2] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[3] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[4] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[5] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[6] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[7] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[8] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[9] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[10] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[11] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[12] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[13] Synchronization of Markovian jumping complex networks with event-triggered control
Shao Hao-Yu, Hu Ai-Hua, Liu Dan. Chin. Phys. B, 2015, 24(9): 098902.
[14] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
[15] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng, Wang Zheng-Jie, Fan Ning-Jun. Chin. Phys. B, 2015, 24(2): 020203.
No Suggested Reading articles found!