Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040303    DOI: 10.1088/1674-1056/27/4/040303
GENERAL Prev   Next  

Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes

S Golkar, M K Tavassoly
Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd 89195-741, Iran
Abstract  Preventing quantum entanglement from decoherence effect is of theoretical and practical importance in the quantum information processing technologies. In this regard, we consider the entanglement dynamics of two identical qubits where the qubits which are coupled to two independent (Markovian and/or non-Markovian) as well as a common reservoir at zero temperature are further interacted with a classical driving laser field. Then, we study the preservation of generated two-qubit entanglement in various situations using the concurrence measure. It is shown that by applying the classical driving field and so the possibility of controlling the Rabi frequency, the amount of entanglement of the two-qubit system is improved in the off-resonance condition between the qubit and the central cavity frequencies (central detuning) in both non-Markovian and Markovian reservoirs. While the central detuning has a constructive role, the detuning between the qubit and the classical field (laser detuning) affects negatively on the entanglement protection. The obtained results show that long-living entanglement in the non-Markovian reservoir is more accessible than in the Markovian reservoir. We demonstrate that, in a common reservoir non-zero stationary entanglement is achievable whenever the two-qubit system is coupled to the reservoir with appropriate values of relative coupling strengths.
Keywords:  entanglement      Markovian and non-Markovian reservoir      Rabi frequency      concurrence  
Received:  11 November 2017      Revised:  29 January 2018      Published:  05 April 2018
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Bg (Entanglement production and manipulation)  
Corresponding Authors:  M K Tavassoly     E-mail:  mktavassoly@yazd.ac.ir

Cite this article: 

S Golkar, M K Tavassoly Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes 2018 Chin. Phys. B 27 040303

[1] Nielsen M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Daneshmand R and Tavassoly M K 2016 Eur. Phys. J. D 70 101
[3] Sehati N and Tavassoly M K 2017 Quantum Inf. Proc. 16 193
[4] Zhang S L, Jin C H, Shi J H, Guo J S, Zou X B and Guo G C 2017 Chin. Phys. Lett. 34 040302
[5] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[6] Zhang S L, Jin C H, Guo J S, Shi J H, Zou X B and Guo G C 2016 Chin. Phys. Lett. 33 120302
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[9] Pakniat R, Tavassoly M K and Zandi M H 2016 Chin. Phys. B 25 100303
[10] Ghasemi M and Tavassoly M K 2016 Eur. Phys. J. Plus 131 297
[11] Pakniat R, Tavassoly M K and Zandi M H 2017 Opt. Commun. 382 381
[12] Zurek W H 2003 Rev. Mod. Phys. 75 715
[13] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[14] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[15] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[16] Facchi P, Lidar D and Pascazio S 2004 Phys. Rev. A 69 032314
[17] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[18] Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327
[19] Kwiat P G, Berglund A J, Altepeter J B and White A G 2000 Science 290 498
[20] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[21] Paternostro M, Tame M, Palma G and Kim M 2006 Phys. Rev. A 74 052317
[22] Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2008 Nat. Phys. 4 919
[23] Zhang S L, Guo J S, Shi J H and Zou X B 2016 Chin. Phys. Lett. 33 070303
[24] Das S and Agarwal G 2010 Phys. Rev. A 81 052341
[25] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
[26] Sun Q, Al-Amri M, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323
[27] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[28] Yu T and Eberly J 2004 Phys. Rev. Lett. 93 140404
[29] Gardiner C W and Zoller P 1999 Quantum Noise (Berlin:Springer)
[30] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[31] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[32] Bellomo B, Franco R L, Maniscalco S and Compagno G 2010 Phys. Scr. T140 014014
[33] Xiao X, Fang M F, Li Y L, Zeng K and Wu C 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235502
[34] Tong Q J, An J H, Luo H G and Oh C H 2010 Phys. Rev. A 81 052330
[35] Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
[36] Chen C, Yang C J and An J H 2016 Phys. Rev. A 93 062122
[37] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[38] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford:Oxford University Press)
[39] Spohn H 1980 Rev. Mod. Phys. 52 569
[40] Dalton B J, Barnett S M and Garraway B M 2001 Phys. Rev. A 64 053813
[41] Maniscalco S and Petruccione F 2006 Phys. Rev. A 73 012111
[42] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[43] Liu Y X, Sun C P, Nori F and Franco 2006 Phys. Rev. A 74 052321
[44] Zhang J S and Xu J B 2009 Opt. Commun. 282 2543
[45] Zhang J S, Xu J B and Lin Q 2009 Eur. Phys. J. D 51 283
[1] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[9] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[10] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun- Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), Yin Zhong(钟寅). Chin. Phys. B, 2020, 29(10): 107301.
[14] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[15] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
No Suggested Reading articles found!