Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038103    DOI: 10.1088/1674-1056/27/3/038103
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures

Haifei Zhan(占海飞)1,2, Yuantong Gu(顾元通)2
1 School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia;
2 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology(QUT), Brisbane QLD 4001, Australia
Abstract  This review summarizes the current studies of the thermal transport properties of one-dimensional (1D) carbon nanomaterials and nanoarchitectures. Considering different hybridization states of carbon, emphases are laid on a variety of 1D carbon nanomaterials, such as diamond nanothreads, penta-graphene nanotubes, supernanotubes, and carbyne. Based on experimental measurements and simulation/calculation results, we discuss the dependence of the thermal conductivity of these 1D carbon nanomaterials on a wide range of factors, including the size effect, temperature influence, strain effect, and others. This review provides an overall understanding of the thermal transport properties of 1D carbon nanomaterials and nanoarchitectures, which paves the way for effective thermal management at nanoscale.
Keywords:  diamond nanothread      carbon nanotube      thermal conductivity      molecular dynamics simulations  
Received:  11 October 2017      Revised:  29 January 2018      Published:  05 March 2018
PACS:  81.05.U- (Carbon/carbon-based materials)  
  81.05.uj (Diamond/nanocarbon composites)  
  61.46.-w (Structure of nanoscale materials)  
  65.80.Ck (Thermal properties of graphene)  
Fund: Project supported by Australian Research Council (ARC) Discovery Project DP170102861.
Corresponding Authors:  Yuantong Gu     E-mail:  yuantong.gu@qut.edu.au

Cite this article: 

Haifei Zhan(占海飞), Yuantong Gu(顾元通) Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures 2018 Chin. Phys. B 27 038103

[1] Wang X and Gan X 2017 Chin. Phys. B 26 034203
[2] Balandin A A 2011 Nat. Mater. 10 569
[3] Xu Y, Li Z and Duan W 2014 Small 10 2182
[4] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[5] Zhan H F, Zhang Y Y, Bell J M and Gu Y T 2014 J. Phys. D:Appl. Phys. 47 015303
[6] Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826-32
[7] Hu G J and Cao B Y 2014 Chin. Phys. B 23 096501
[8] Feng Y, Zhu J and Tang D W 2014 Chin. Phys. B 23 083101
[9] Guo Z X, Zhang D and Gong X G 2011 Phys. Rev. B 84 075470
[10] Chen X, Xu Y, Zou X, Gu B L and Duan W 2013 Phys. Rev. B 87 155438
[11] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[12] Zhang G and Li B 2005 J. Chem. Phys 123 114714
[13] Chen J, Zhang G and Li B 2010 Nano Lett. 10 3978
[14] Kim P, Shi L, Majumdar A and McEuen P 2001 Phys. Rev. Lett. 87 215502
[15] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Nano Lett. 6 96
[16] Gang Z and Yong Z 2017 Chin. Phys. B 26 034401
[17] Guo Z X, Ding J W and Gong X G 2012 Phys. Rev. B 85 235429
[18] Cao H Y, Guo Z X, Xiang H and Gong X G 2012 Phys. Lett. A 376 525
[19] Zhang H S, Guo Z X, Gong X G and Cao J X 2012 J. Appl. Phys. 112 123508
[20] Cao H Y, Xiang H and Gong X G 2012 Solid State Commun. 152 1807
[21] Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
[22] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[23] Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z and Shi L 2013 Nano Lett. 13 550
[24] Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G and Su G 2014 Phys. Rev. B 89 054310
[25] Hu M, Zhang X and Poulikakos D 2013 Phys. Rev. B 87 195417
[26] Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308
[27] Ding Z, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358
[28] Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438
[29] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
[30] Li D, Xu Y, Chen X, Li B and Duan W 2014 Appl. Phys. Lett. 104 143108
[31] Cai Y, Ke Q, Zhang G, Feng Y P, Shenoy V B and Zhang Y W 2015 Adv. Funct. Mater. 25 2230
[32] Zhu H, Xu Y, Gu B L and Duan W 2012 New J. Phys. 14 013053
[33] Huang H, Xu Y, Zou X, Wu J and Duan W 2013 Phys. Rev. B 87 205415
[34] Chang C, Fennimore A, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A and Zettl A 2006 Phys. Rev. Lett. 97 085901
[35] Pei Q X, Zhang Y W, Sha Z D and Shenoy V B 2012 Appl. Phys. Lett. 100 101901
[36] Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin A A and Ruoff R S 2012 Nat. Mater. 11 203
[37] Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752
[38] Zhang G and Li B 2010 Nanoscale 2 1058
[39] Wang Y, Zhan H, Xiang Y, Yang C, Wang C M and Zhang Y 2015 J. Phys. Chem. C 119 12731
[40] Luo T and Lloyd J R 2012 Adv. Funct. Mater. 22 2495
[41] Han Z and Fina A 2011 Prog. Polym. Sci. 36 914
[42] Yu Y, Wu L and Zhi J 2014 Angew. Chem. Int. Ed. 53 14326
[43] Guo J, Wen B, Melnik R, Yao S and Li T 2011 Diam. Relat. Mater. 20 551
[44] Hiromu S 1997 Jpn. J. Appl. Phys. 36 7745
[45] Coffinier Y, Szunerits S, Drobecq H, Melnyk O and Boukherroub R 2012 Nanoscale 4 231
[46] Luo D, Wu L and Zhi J 2010 Chem. Commun. 46 6488
[47] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
[48] Stojkovic D, Zhang P and Crespi V H 2001 Phys. Rev. Lett. 87 125502
[49] Xu E S, Lammert P E and Crespi V H 2015 Nano Lett. 15 5124
[50] Chen B, Hoffmann R, Ashcroft N W, Badding J, Xu E and Crespi V 2015 J. Am. Chem. Soc. 137 14373
[51] Olbrich M, Mayer P and Trauner D 2014 Org. Biomol. Chem. 12 108
[52] Barua S R, Quanz H, Olbrich M, Schreiner P R, Trauner D and Allen W D 2014 Chem. Eur. J. 20 1638
[53] Zhan H, Zhang G, Tan V B C, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Nanoscale 8 11177
[54] Silveira J F R V and Muniz A R 2017 Carbon 113 260
[55] Van Duin A C, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
[56] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys 112 6472
[57] Zhan H, Zhang G, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[58] Zhan H, Zhang G, Bell J M and Gu Y 2016 Carbon 107 304
[59] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
[60] Silveira J F R V and Muniz A R 2017 Phys. Chem. Chem. Phys. 19 7132
[61] Zhan H, Zhang G, Tan V B, Cheng Y, Bell J M, Zhang Y W and Gu Y 2016 Adv. Funct. Mater. 26 5279
[62] Zhan H, Zhang G, Tan V B C and Gu Y 2017 Nat. Commun. 8 14863
[63] Iijima S 1991 Nature 354 56
[64] De Volder M F, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[65] Zhigilei L V, Salaway R N, Wittmaack B K and Volkov A N 2017 Carbon Nanotubes for Interconnects:Process, Design and Applications, (Todri-Sanial A, et al., Ed.) (Cham:Springer International Publishing) pp. 129-61
[66] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372
[67] Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F and Dong M 2010 Small 6 2010
[68] Chen M, Zhan H, Zhu Y, Wu H and Gu Y 2017 J. Phys. Chem. C 121 9642
[69] Xu W, Zhang G and Li B 2015 J. Chem. Phys 143 154703
[70] Viculis L M, Mack J J and Kaner R B 2003 Science 299 1361
[71] Liu Z, Xue Q, Tao Y, Li X, Wu T, Jin Y and Zhang Z 2015 Phys. Chem. Chem. Phys. 17 3441
[72] Zhan H F, Zhang G Y, Bell J M and Gu Y T 2015 J. Phys. Chem. C 119 27562
[73] Shi X, Yin Q, Pugno N M and Gao H 2013 J. Appl. Mech. 81 021014
[74] Ren Z and Gao P X 2014 Nanoscale 6 9366
[75] Wang J S, Ye H M, Qin Q H, Xu J and Feng X Q 2012 Proc. Royal Soc. A 468 609
[76] Wang J S, Wang G, Feng X Q, Kitamura T, Kang Y L, Yu S W and Qin Q H 2013 Sci. Rep. 3 3102
[77] Zhu H, Shimada T, Wang J, Kitamura T and Feng X 2016 J. Appl. Mech. 83 101010
[78] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H and Ajayan P M 2002 Phys. Rev. Lett. 89 075505
[79] Terrones M, Terrones H, Banhart F, Charlier J C and Ajayan P M 2000 Science 288 1226
[80] Zhan H F, Zhang G, Bell J M and Gu Y T 2014 Appl. Phys. Lett. 105 153105
[81] Xia K, Zhan H, Wei Y and Gu Y 2014 Beilstein J. Nanotechnol. 5 329
[82] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji A R O and Kittrell C 2012 Nat. Commun. 3 1225
[83] Zhou R, Liu R, Li L, Wu X and Zeng X C 2011 J. Phys. Chem. C 115 18174
[84] Coluci V R, Galvao D S and Jorio A 2006 Nanotechnology 17 617
[85] Qin Z, Feng X Q, Zou J, Yin Y and Yu S W 2007 Appl. Phys. Lett. 91 043108
[86] Coluci V R, Pugno N M, Dantas S O, Galvao D S and Jorio A 2007 Nanotechnology 18 335702
[87] Jiang K, Li Q and Fan S 2002 Nature 419 801
[88] Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q and Fan S 2006 Adv. Mater. 18 1505
[89] Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L, Ren Y, Shen J, Niu Z and Zhou W 2009 Adv. Mater. 21 603
[90] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J and Pasquali M 2013 Science 339 182
[91] Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
[92] Zhang M, Fang S, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R and Baughman R H 2005 Science 309 1215
[93] Zhao Z L, Li B and Feng X Q 2016 Int. J. Non Linear Mech. 81 19
[94] Ji X Y, Zhao M Q, Wei F and Feng X Q 2012 Appl. Phys. Lett. 100 263104
[95] Zhao Z L, Zhao H P, Wang J S, Zhang Z and Feng X Q 2014 J. Mech. Phys. Solids 71 64
[96] Lima M D, Li N, Jung de Andrade M, Fang S, Oh J and Spinks G M 2012 Science 338 928
[97] Lima M D, Hussain M W, Spinks G M, Naficy S, Hagenasr D, Bykova J S, Tolly D and Baughman R H 2015 Small 11 3113
[98] Weng W, Sun Q, Zhang Y, Lin H, Ren J, Lu X, Wang M and Peng H 2014 Nano Lett. 14 3432
[99] Lu W, Zu M, Byun J H, Kim B S and Chou T W 2012 Adv. Mater. 24 1805
[100] Haley M M, Brand S C and Pak J J 1997 Angew. Chem. Int. Ed. 36 836
[101] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[102] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[103] Zhang Y Y, Pei Q X and Wang C M 2012 Appl. Phys. Lett. 101 081909
[104] Xia K, Zhan H and Gu Y 2015 Carbon 95 1061
[105] Hu N, Yang Z, Wang Y, Zhang L, Huang X, Wei H, Wei L and Zhang Y 2014 Nanotechnology 25 025502
[106] Zhang Y Y, Pei Q X and Wang C M 2012 Comput. Mater. Sci. 65 406
[107] Wu W, Guo W and Zeng X C 2013 Nanoscale 5 9264
[108] Li G, Li Y, Qian X, Liu H, Lin H, Chen N and Li Y 2011 J. Phys. Chem. C 115 2611
[109] Baughman R H 2006 Science 312 1009
[110] Cannella C B and Goldman N 2015 J. Phys. Chem. C 119 21605
[111] Robertson A W and Warner J H 2013 Nanoscale 5 4079
[112] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967
[113] Liu X, Zhang G and Zhang Y W 2015 J. Phys. Chem. C 119 24156
[114] Kocsis A J, Yedama N A R and Cranford S W 2014 Nanotechnology 25 335709
[115] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[116] Hu M, Jing Y and Zhang X 2015 Phys. Rev. B 91 155408
[117] Muller-Plathe F 1997 J. Chem. Phys. 106 6082
[118] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[119] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn. 79
[120] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[121] Liang T, Devine B, Phillpot S R and Sinnott S B 2012 J. Phys. Chem. A 116 7976
[122] de Tomas C, Suarez-Martinez I and Marks N A 2016 Carbon 109 681
[123] Borca-Tasciuc T, Achimov D, Liu W L, Chen G, Ren H W, Lin C H and Pei S S 2001 Microsc. Therm. 5 225
[124] Balandin A and Wang K L 1998 Phys. Rev. B 58 1544
[125] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A 2012 Phys. Rev. B 85 195436
[126] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.:Condens. Matter 14 783
[127] Guo J, Wen B, Melnik R, Yao S and Li T 2010 Physica E 43 155
[128] Jiang J W, Wang B S and Wang J S 2011 Phys. Rev. B 83 235432
[129] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
[130] Dickel D and Daw M S 2010 Comput. Mater. Sci. 47 698
[131] Gao Y, Wang H and Daw M 2015 Modell. Simul. Mater. Sci. Eng. 23 045002
[132] Simkin M and Mahan G 2000 Phys. Rev. Lett. 84 927
[133] Chen Y, Li D, Lukes J R, Ni Z and Chen M 2005 Phys. Rev. B 72 174302
[134] Zhu T and Ertekin E 2014 Phys. Rev. B 90 195209
[135] Latour B, Volz S and Chalopin Y 2014 Phys. Rev. B 90 014307
[136] Xiang B, Tsai C B, Lee C J, Yu D P and Chen Y Y 2006 Solid State Commun. 138 516
[137] Prasher R, Tong T and Majumdar A 2008 Nano Lett. 8 99
[138] Hu M and Poulikakos D 2012 Nano Lett. 12 5487
[139] Zhan H, Bell J M and Gu Y 2015 RSC Adv. 5 48164
[140] Zhan H, Zhang Y, Bell J M and Gu Y 2015 J. Phys. Chem. C 119 1748
[141] Cao J X, Yan X H, Xiao Y and Ding J W 2004 Phys. Rev. B 69 073407
[142] Cao J X, Yan X H, Xiao Y, Tang Y and Ding J W 2003 Phys. Rev. B 67 045413
[143] Eucken A 1911 Phys. Z 12 1101
[144] Holland M 1964 Phys. Rev. 134 A471
[145] Zhu T and Ertekin E 2016 Nano Lett. 16 4763
[146] Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W and Zhang X 2017 Comput. Mater. Sci. 137 195
[147] Wang F Q, Yu J, Wang Q, Kawazoe Y and Jena P 2016 Carbon 105 424
[148] Wang Y and Zhang Y 2015 Proceedings of the 2015 IEEE m 65th Electronic Components and Technology Conference May 26-29, 2015 San Diego CA, USA, p. 1234
[149] Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M and Iijima S 2006 Nat. Mater. 5 987
[150] Hu L J, Liu J, Liu Z, Qiu C Y, Zhou H Q and Sun L F 2011 Chin. Phys. B 20 096101
[151] Hone J, Whitney M, Piskoti C and Zettl A 1999 Phys. Rev. B 59 R2514
[152] Zhang L, Zhang G, Liu C and Fan S 2012 Nano Lett. 12 4848
[153] Jiang J W 2015 Carbon 81 688
[154] Marconnet A M, Yamamoto N, Panzer M A, Wardle B L and Goodson K E 2011 ACS Nano 5 4818
[155] Aitkaliyeva A and Shao L 2013 Appl. Phys. Lett. 102 063109
[156] Xue-Kun C, Chang-Yong C, Jun L and Ke-Qiu C 2017 J. Phys. D:Appl. Phys. 50 345301
[157] Zhao H, Wei D, Zhou L, Shi H and Zhou X 2015 Comput. Mater. Sci. 106 69
[158] Sun H, Mumby S J, Maple J R and Hagler A T 1994 J. Am. Chem. Soc. 116 2978
[159] Wang M and Lin S 2016 Sci. Rep. 5 18122
[160] Gang Z 2015 Nanoscale Energy Transport and Harvesting:A Computational Study (New York:CRC Press)
[161] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503
[162] Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Appl. Phys. Lett. 105 103902
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[3] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[4] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[5] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[6] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[7] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[8] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[9] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[10] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[11] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[12] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[13] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[14] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[15] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
No Suggested Reading articles found!