Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024203    DOI: 10.1088/1674-1056/27/2/024203

Quantum state transfer via a hybrid solid-optomechanical interface

Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰)
College of Science, Dalian Maritime University, Dalian 116026, China
Abstract  We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid-optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking, and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters. Our scheme has the potential to implement unified quantum computing-communication-computing, and high fidelity of the microwave-optics-microwave transfer process of the quantum state.
Keywords:  quantum state transfer      hybrid solid-optomechanical interface      Gaussian pulses  
Received:  24 August 2017      Revised:  25 September 2017      Published:  05 February 2018
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11305021) and the Fundamental Research Funds for the Central Universities of China (Grants Nos. 3132017072 and 3132015149).
Corresponding Authors:  He-Fei Huang     E-mail:
About author:  42.50.Ex; 42.50.Pq; 42.50.-p; 42.50.Dv

Cite this article: 

Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰) Quantum state transfer via a hybrid solid-optomechanical interface 2018 Chin. Phys. B 27 024203

[1] Neto G D D, Andrade F M, Montenegro V and Bose S 2016 Phys. Rev. A 93 062339
[2] Sete E A and Eleuch H 2015 Phys. Rev. A 91 032309
[3] Pei P, Huang H F, Guo Y Q and Song H S 2016 Chin. Phys. Lett. 33 020301
[4] Li X H 2016 Acta Phys. Sin. 65 030302(in Chinese)
[5] Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 160306(in Chinese)
[6] Razavi M and Shapiro J H 2006 Phys. Rev. A 73 042303
[7] Blais A, Huang R S, Wallraff A, Cirvin M S and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[8] Blais A, Gambetta J, Wallraff A, Schuster D I, Cirvin M S, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
[9] Xiang Z L, Ashhab S, You Z Q and Franco N 2013 Rev. Mod. Phys. 85 623
[10] Rabl P, Cappellaro P, Dutt M V G, Jiang L, Maze J R and Lukin M D 2009 Phys. Rev. B 79 041302
[11] Das S E, Vincent E and Faez S 2017 Phys. Rev. Lett. 118 140501
[12] Hofheinz M, et al. 2008 Nature 454 7202
[13] Manuchargan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[14] Aspelmeyer, Markus, Kippenberg, Tobias J, Marquard and Florian 2014 Rev. Mod. Phys. 86 1391
[15] Bhattacherjee A B 2016 Int. J. Theor. Phys. 55 1944
[16] Ranjit G, Montoga C and Geraci A A 2015 Phys. Rev. A 91 013416
[17] Zhong H et al. 2017 Rev. Sci. Instrum. 88 023115
[18] Johansson J R, Johansson G and Nori F 2014 Phys. Rev. A 90 053833
[19] Xiong W et al. 2015 Phys. Rev. A 92 032318
[20] Yin Z Q, Yang W L, Sun L and Duan L M 2015 Phys. Rev. A 91 012333
[21] Cernotik O and Hammerer K 2016 Phys. Rev. A 94 012340
[22] Kim D S, Cho J W, Park K, Kim Y S and Kim S K 2017 Curr. Appl. Phys. 17 1015
[23] Aspelmeyer, Markus, Kippenberg, Tobias J, Marquard, Florian 2014 Cavity Optomechanics (Berlin:Springer)
[24] Yin Z Q and Han Y J 2009 Phys. Rev. A 79 024301
[25] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[26] Tian L 2012 Phys. Rev. Lett. 108 153604
[27] Walls D F and Milburn G J 2007 Quantum Optics (Berlin:Springer)
[28] Warwick P, Bowen, Gerard J and Milburn 2016 Quantum Optomechanics (U.S.:CRC)
[29] Jahne K, Yurke B, and Gavish U 2007 Phys. Rev. A 75 010301
[30] Korotkov A N 2011 Phys. Rev. B 84 014510
[31] Sete E A, Mlinar E and Korotkov A K 2015 Phys. Rev. B 91 144509
[32] James D F V and Jerke J 2007 Can. J. Phys. 85 625
[33] Choi H, Park M, Elliott D S and Oh K 2017 Phys. Rev. A 95 053817
[34] Pei P, Zhang F Y, Li C and Song H S 2011 Phys. Rev. A 84 042339
[35] Chen Q, Yang W L and Feng M 2012 Phys. Rev. A 86 022327
[36] Shi. J F, Ge B J and Wang D X 2016 Int. J. Theor. Phys. 55 2928
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[4] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[5] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[6] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[7] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[8] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2011, 20(11): 110305.
[9] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(10): 100312.
[10] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
[11] Quantum communication in spin star configuration
Deng Hong-Liang, Fang Xi-Ming. Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!