Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024202    DOI: 10.1088/1674-1056/27/2/024202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Double-rod metasurface for mid-infrared polarization conversion

Yang Pu(蒲洋)1, Yi Luo(罗意)1, Lu Liu(刘路)1, De He(何德)1, Hongyan Xu(徐洪艳)2, Hongwei Jing(景洪伟)2, Yadong Jiang(蒋亚东)1, Zhijun Liu(刘志军)1
1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Abstract  Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper, we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.
Keywords:  metasurface      polarization conversion      mid-infrared      broadband  
Received:  26 July 2017      Revised:  16 October 2017      Published:  05 February 2018
PACS:  42.25.Ja (Polarization)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  95.85.Hp (Infrared (3-10 μm))  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61421002 and 61575036), the Chinese National 1000 Plan for Young Talents, and the Startup Funding from University of Electronic Science and Technology of China.
Corresponding Authors:  Zhijun Liu     E-mail:  liuzhijun@uestc.edu.cn
About author:  42.25.Ja; 78.67.Pt; 95.85.Hp

Cite this article: 

Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军) Double-rod metasurface for mid-infrared polarization conversion 2018 Chin. Phys. B 27 024202

[1] Hu J, Meyer J, Richardson K and Shah L 2013 Opt. Mater. Express 3 1571
[2] Jackson S D 2012 Nat. Photon. 6 423
[3] Yao Y, Hoffman A J and Gmachl C F 2012 Nat. Photon. 6 432
[4] Tidrow M Z, Beck W A, Clark Ⅲ W W, Pollehn H K, Little J W, Dhar N K, Leavitt R P, Kennerly S W, Beekman D W, Goldberg A C and Dyer W R 1999 Proc. SPIE 3629 100
[5] Chen G, Haddadi A, Hoang A-M, Chevallier R and Razeghi M 2015 Opt. Lett. 40 45
[6] Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M and Capasso F 2014 Nano Lett. 14 6526
[7] Han D, Lee K, Jo H, Song Y, Kim M and Ahn J 2016 Opt. Express 24 21276
[8] Born M and Wolf E 1999 Principles of Optics (Cambridge:Cambridge University Press)
[9] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[10] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M and Zhou L 2009 Phys. Rev. A 80 023807
[11] Li T, Wang S M, Cao J X, Liu H and Zhu S N 2010 Appl. Phys. Lett. 97 261113
[12] Feng M, Wang J, Ma H, Mo W, Ye H and Qu S 2013 J. Appl. Phys. 114 074508
[13] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[14] Shi H Y, Li J X, Zhang A X, Wang J F and Xu Z 2014 Chin. Phys. B 23 118101
[15] Wu X, Meng Y, Wang L, Tian J, Dai S and Wen W 2016 Appl. Phys. Lett. 108 183502
[16] Huang Y, Yang L, Li J, Wang Y and Wen G 2016 Appl. Phys. Lett. 109 054101
[17] Wu J L, Lin B Q and Da X Y 2016 Chin. Phys. B 25 088101
[18] Sun H, Gu C, Chen X, Li Z, Liu L and Martín F 2017 J. Appl. Phys. 121 174902
[19] Novotny L 2007 Phys. Rev. Lett. 98 266802
[20] Luo Y, Ying X, Pu Y, Jiang Y, Xu J and Liu Z 2016 Appl. Phys. Lett. 108 231103
[21] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lin Y and Zhang H 2014 Opt. Express 22 29143
[22] Ding J, Arigong B, Ren H, Shao J, Zhou M, Lin Y and Zhang H 2015 Plasmonics 10 351
[23] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z and Tian J 2013 Appl. Phys. Lett. 103 223102
[24] Yang C, Luo Y, Guo J, Pu Y, He D, Jiang Y, Xu J and Liu Z 2016 Opt. Express 24 16913
[25] Chen M, Sun W, Cai J, Chang L and Xiao X 2017 Plasmonics 12 699
[26] Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J-L 2014 Appl. Phys. Lett. 104 111105
[27] Zhang Z, Luo J, Song M and Yu H 2015 Appl. Phys. Lett. 107 241904
[28] Mousavi S H, Khanikaev A B, Neuner B, Fozdar D Y, Corrigan T D, Kolb P W, Drew H D, Phaneuf R J, Alú A and Shvets G 2011 Opt. Express 19 22142
[29] Ye Z, Zhang S, Wang Y, Park Y-S, Zentgraf T, Bartal G, Yin X and Zhang X 2012 Phys. Rev. B 86 155148
[30] Omaghali N E J, Tkachenko V, Andreone A and Abbate G 2014 Sensors 14 272
[31] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W Jr and Ward C A 1983 Appl. Opt. 22 1099
[32] Ahmed S and Khawaja E E 1984 Thin Solid Films 112 L1
[33] Yang J and Zhang J 2011 Plasmonics 6 251
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[5] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[6] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[7] Broadband energy harvesting based on one-to-one internal resonance
Wen-An Jiang(姜文安), Xin-Dong Ma(马新东), Xiu-Jing Han(韩修静), Li-Qun Chen(陈立群), Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2020, 29(10): 100503.
[8] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[9] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[10] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[11] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[12] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[13] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[14] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[15] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
No Suggested Reading articles found!